
HAL Id: hal-00940312
https://audencia.hal.science/hal-00940312

Submitted on 5 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volatility persistence in crude oil markets
Amélie Charles, Olivier Darné

To cite this version:
Amélie Charles, Olivier Darné. Volatility persistence in crude oil markets. Energy Policy, 2014, 65,
pp.729-742. �10.1016/j.enpol.2013.10.042�. �hal-00940312�

https://audencia.hal.science/hal-00940312
https://hal.archives-ouvertes.fr


Volatility Persistence in Crude Oil Markets

Amélie CHARLES∗

Audencia Nantes, School of Management

Olivier DARNÉ†

LEMNA, University of Nantes

February 4, 2014

Abstract

Financial market participants and policy-makers can benefit from a better un-

derstanding of how shocks can affect volatility over time. This study assesses

the impact of structural changes and outliers on volatility persistence of three

crude oil markets – Brent, West Texas Intermediate (WTI) and Organization of

Petroleum Exporting Countries (OPEC) – between January 2, 1985 and June 17,

2010. Firstly, we identify the time points at which structural changes occurred us-

ing the modified ICSS test developed by Sansó et al. (2004) and then incorporate

this information into the volatility modeling. Our results indicated that the degree

of persistence of volatility is reduced by incorporating the variance changes into

the volatility model. Secondly, we identify outliers using intervention analysis

and conditional heteroscedasticity model. These large shocks can be associated

with particular event patterns, such as the invasion of Kuwait by Iraq, the Oper-

ation Desert Storm, the Operation Desert Fox, and the Global Financial Crisis as
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well as OPEC announcements on production reduction or US announcements on

crude inventories. We find that the crude oil markets are more affected by outliers

and patches of outliers than by variance changes. We also show that outliers can

bias the estimation of the persistence of the volatility. Taking into account out-

liers on the volatility modelling process improve the understanding of volatility

in crude oil markets.

Keywords: Crude oil; volatility persistence; structural breaks; outliers; GARCH.
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1 Introduction

The price of crude oil is one of the world’s most important global economic indicators.

Policy-makers, producers, consumers and financial participants monitor its behavior.

Since the end of the 1990s oil prices have been steadily increasing, reflecting rising

demand for crude oil, particularly from developing nations. Oil prices have been

very volatile, changing their trajectories and behavior with respect to the economic

situation. Understanding the behavior of volatility in crude oil prices is important

for pricing financial assets, for implementing hedging strategies and for assessing

regulatory proposals to restrict international capital flows. For examples, changes in

volatility can affect the risk exposure of producers and industrial consumers of oil.

These changes may alter their respective investments in oil inventories and facilities

for production and transportation.

Crude oil prices are characterized by high volatility and some drastic shocks, such

as the day Operation Desert Storm with a negative return of −42% for WTI (Askari

and Krichene, 2008; Larsson and Nossman, 2011). Financial market participants

and policy-makers can benefit from a better understanding of how shocks can affect

volatility over time, especially whether the shocks are persistent or short lived.

Autoregressive conditionally heteroscedastic (ARCH) models introduced by Engle

(1982) and extended to generalized ARCH (GARCH) by Bollerslev (1986), have been

developed to capture the two most important stylized facts of returns of financial

assets, which are heavy-tailed distribution and volatility clustering. According to

these models, the information available in a period is important for predicting future

variance. It is interesting to consider how the available information affects forecast

uncertainty as the forecast horizon increases; in other words, the degree of persistence.

Persistence in the variance of a random variable evolving through time refers to

the property of momentum in conditional variance; past volatility explains current

volatility.

As underlined by Aragó and Fernandez-Izquierdo (2003), the degree of persistence

of the variance has evident economic implications, arising from the effect that this
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aspect has on the predictability of their future value. Poterba and Summers (1986)

argue that, for multiperiod assets such as stocks, shocks have to persist for a long time

for a time-varying risk premium to be able to explain the large fluctuations observed

in the stock market. Likewise, this aspect is important in the valuation of options,

since the shocks that permanently influence the variance will affect their price to a

greater degree than those that are temporary. This aspect can have a direct influence

on dynamic hedging policies that try to minimize the risk of the hedged position with

futures contracts, since the value of that ratio will depend on the capacity to predict the

variance of the futures contract correctly (Wilson et al., 1996). Traders who participate

in both the cash and futures markets choose a hedging strategy that reflects their risk

and return preferences. The risk and return of the portfolio depend on the hedge ratio.

An optimal hedge ratio is one that minimizes the variance of the hedged portfolio

return. The time-varying hedge strategy depends critically on the predictability of the

future variances and, consequently, assumes no sudden changes in the variance of the

series.

However, financial markets are periodically subject to sudden large shocks, such as

the financial crisis. These types of shocks can cause abrupt breaks in the unconditional

variance of returns and are equivalent to structural breaks in the parameters of the

GARCH processes governing the conditional volatility of returns. It is well know that

these shocks can bias the estimated persistence of volatility (see, e.g., Lamoureux

and Lastrapes, 1990; Mikosch and Starica, 2004; Hillebrand, 2005; Krämer and

Azamo, 2007). A relatively recent approach to test for volatility shifts is the iterative

cumulative sums of squares (ICSS) algorithm (Inclán and Tiao, 1994; Sansó et al.,

2004). This algorithm allows for detecting multiple breakpoints in variance and has

been extensively used for identifying changes in the volatility of financial time series

(Hammoumdeh and Li, 2008; Kasman, 2009; Wang and Moore, 2009, among others).

To the best of our knowledge, Wilson et al. (1996), Ewing and Malik (2010), Kang

et al. (2011), Vivian and Wohar (2012) and Arouri et al. (2012) are the only studies
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that analyze sudden changes in oil prices from the ICSS algorithm.1 They find mixed

results on the presence or not of variance changes in crude oil markets. Recently, Ro-

drigues and Rubia (2011) study the size properties of ICSS algorithm for detecting

structural breaks in variance under the hypothesis of additive outliers, which are usu-

ally present in financial time series (e.g., Charles and Darné, 2005; Bali and Guirguis,

2007). Their results indicate that neglected outliers tend to bias the ICSS test. In this

paper we thus detect outliers in the crude oil returns before we attempt to identify the

variance changes. The large shocks in volatility of the Brent, OPEC and WTI crude oil

prices are identified from intervention analysis based on a conditional heteroscedastic-

ity model proposed by Franses and Ghijsels (1999). We determine when these (positive

and negative) large changes in volatility of daily returns occur. We try to associate the

date of each additive outlier with a specific (economic, political or financial) event that

occurred near that date, and many of them seem to be associated with the same event

patterns. We find that large shocks in volatility of the crude oil prices are principally

due to the Iran-Irak war, the invasion of Kuwait by Iraq, the Operation Desert Storm,

the Operation Desert Fox, and the Global Financial Crisis as well as OPEC announce-

ments on production reduction or US announcements on crude inventories. We use the

modified ICSS test proposed by Sansó et al. (2004) to identify breakpoints and sudden

shifts in volatility and do not find structural breaks in the volatility when taking into ac-

count these large shocks. Finally, we investigate the degree of persistence of the three

oil markets by comparing estimates of different GARCH models which capture short

and long memory (GARCH, IGARCH, FIGARCH and HYGARCH) from three ways:

(1) original data; (2) original data with structural breaks; and (3) outlier-adjusted data.

The results show the importance to take into account the large shocks in modelling

volatility of crude oil returns.

1Fong and See (2002, 2003) and Vo (2009) model conditional volatility of crude oil futures prices

with a Markow switching GARCH model and find regime shifts. In our paper, we detect the shift points

in (unconditional) variance, not the probabilities associated with those shifts and without restricting the

number of regimes to two as in the Markov switching model.
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This article is organized as follows. The literature review is given in Section 2.

Section 3 describes the sequential procedure for detecting outliers in crude oil prices,

and the modified ICSS algorithm used to identify sudden variance breaks in crude oil

prices. The data set is presented in Section 4. The empirical results on outliers and

variance changes are discussed in Section 5. Section 6 displays the study of the degree

of persistence. Finally, Section 7 concludes.

2 Literature review

Wilson et al. (1996), Ewing and Malik (2010), Kang et al. (2011), Vivian and Wohar

(2012) and Arouri et al. (2012) are the only studies that analyze sudden changes

in oil prices from the ICSS algorithm. Wilson et al. (1996) examine daily data

of oil futures and oil-producing companies from January 1, 1984 to December 31,

1992 using the original ICSS algorithm developed by Inclán and Tiao (1994). They

document sudden changes in the unconditional variance of oil future returns and relate

them to surrounding major events. They also report that shocks are less persistent and

have less initial impact when structural breaks are accounted for within a simple ARCH

model. Kang et al. (2011) also use the original ICSS algorithm to identify structural

changes in volatility of WTI and Brent crude oil prices spanning from January 5, 1990

to March 27, 2009. They find five structural change points, which are correlated with

global economic and political events, such as Iraqi invasion of Kuwait, Gulf War, or

the Global Financial Crisis. They show that the degree of volatility persistence is

overestimated when ignoring regime shifts in variance. Arouri et al. (2012) apply the

original ICSS algorithm on WTI crude oil prices over the period from January 2, 1986

to March 15, 2011, but they do not find structural break in the unconditional variance

dynamics.

The original ICSS algorithm used in the previous studies is designed for i.i.d.

processes, which is a very strong assumption for financial data, in which there is

evidence of conditional heteroskedasticity. Sansó et al. (2004) show that the size

distortions are important for heteroskedastic conditional variance processes from
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Monte carlo simulations. Their results thus invalidate in practice the use of the

original ICSS algorithm for financial time series. To overcome this problem, the

authors propose a new test that explicitly consider the fourth moment properties of

the disturbances and the conditional heteroskedasticity.2 Ewing and Malik (2010)

examine daily WTI crude oil prices from July 1, 1993 to June 30, 2008, by using

this modified ICSS algorithm to identify structural breaks in volatility of oil prices.

They identify three break points and find that oil shocks dissipate very quickly but

have a strong initial impact. Vivian and Wohar (2012) also use the modified ICSS

algorithm to analyze daily WTI and Brent crude oil prices from January 2, 1985 to

July 30, 2010. They find three structural breaks in volatility of Brent and that the

decline in persistence is much smaller than Ewing and Malik (2010) find.3 In contrast

to Ewing and Malik (2010) they find no structural break in WTI.

3 Methodology

3.1 Outlier detection in GARCH models

Several studies have showed that financial data may be affected by contaminated

observations (Balke and Fomby, 1994; Charles and Darné, 2005). This type of

observations, called outliers, reflects extraordinary, infrequently occurring events or

shocks that have important effects on macroeconomic and financial time series. There

are several methods for detecting outliers in nonlinear setting (Hotta and Tsay, 1998;

Sakata and White, 1998; Franses and Ghijsels, 1999; Franses and van Dijk, 2000;

Charles and Darné, 2005; Doornik and Ooms, 2005; Zhang and King, 2005) based on

intervention analysis as originally proposed by Box and Tiao (1975). Here we use the

method proposed by Franses and Ghijsels (1999), which extends the outlier detection

procedure in ARMA (linear) models developed by Chen and Liu (1993) to GARCH

2This adjusted statistic is equivalent to the non-parametric test proposed by Kokoszka and Leipus

(2000).
3Note that Ewing and Malik (2010) and Vivian and Wohar (2012) do not attempt to identify the causes

of the break points.
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models, to take into account the events that cause an immediate, one-shot effect on the

observed series, called additive outlier (AO). This method allows us to examine the

large shocks that affected the crude oil returns.

Consider the returns series εt , which is defined by εt = logPt − logPt−1, where Pt

is the observed price at time t, and consider the GARCH(1,1) model

εt = zt

√

ht , (1)

εt ∼ N(0,
√

ht), zt ∼ i.i.d.N(0,1),

ht = α0 +α1ε2
t−1 +β1ht−1 (2)

where α0 > 0, α1 ≥ 0, β1 ≥ 0 and α1 + β1 < 1, such that the model is covariance-

stationary. The GARCH(1,1) model can be rewritten as an ARMA(1,1) model for ε2
t

(see Bollerslev, 1986)

ε2
t = α0 +(α1 +β1)ε

2
t−1 +νt −β1νt−1 (3)

where νt = ε2
t − ht . The additive outliers (AO) can be modelled by regression

polynomials as follows:

e2
t = ε2

t +ωξ(B)It(τ) (4)

where εt is a GARCH(1,1) process, ξ(B) = 1 is the polynomial characterizing the AO

occurring at time t = τ, ω represents its impact on the series and It(τ) is an indicator

function with the value of 1 at time t = τ and 0 otherwise.

A GARCH(1,1) model is fitted to εt in (9) and the residuals are obtained:

ηt =
−α0

1−β1B
+π(B)e2

t = νt +π(B)ξ(B)ωIt(τ) (5)

where π(B) =
(

1− (α1 +β1)B
)

(1−β1B)−1. The expression (5) can be interpreted as

a regression model for ηt , i.e.

ηt = ωxt +νt (6)

with xt = 0 for t < τ, xt = 1 for t = τ, and xτ+k =−πk (for t > τ and k > 0.

The detection of the outliers is based on likelihood ratio statistics, given by:

τ̂ =
(

ω̂(τ)/σ̂ν

)

( n

∑
t=τ

x2
t

)1/2

with ω̂(τ) =
( n

∑
t=τ

xtηt

)( n

∑
t=τ

x2
t

)−1
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where ω̂(τ) denotes the estimation of the outlier impact at time t = τ, and σ̂2
ν is the

estimated variance of the residual process.

Outliers are identified through running a sequential detection procedure, consisting

of an outer and an inner iteration. In the outer iteration, assuming that there are no

outliers, a GARCH(1,1) model is estimated, obtaining the residuals. The results from

the outer iteration are then used in the inner iteration to identify outliers. The likelihood

ratio test statistics are calculated for each observations. The largest absolute value of

these test statistics τ̂max = max1≤τ≤n |τ̂| is compared to a pre-specified critical value

(based on simulation experiments), and if the test statistic is larger, an outlier is found

at time t = τ. When an outlier is detected, the effect of the outlier is removed from the

data as follows: the observation et is adjusted at time t = τ to obtain the corrected ε∗t via

(4) using the ω̂, i.e. ε∗t = et − ω̂ξIt(τ). This process is repeated until no more outliers

can be found. Next, return to the outer iteration in which the GARCH model is re-

estimated, using the corrected data, and start the inner iteration again. This procedure

is repeated until no outlier is found.

3.2 Sudden change detection

The most popular statistical methods specifically designed to detect breaks in volatil-

ity are CUSUM-type tests. As underlined by Rodrigues and Rubia (2011), the ability

of the CUSUM tests to identify structural changes depends of the underlying assump-

tions. Financial data display a time varying volatility pattern, known as volatility clus-

tering. Andreou and Ghysels (2002) illustrate the pervasive effect of persistent volatil-

ity on CUSUM-type tests experimentally. Their results indicate that the Kokoszka and

Leipus (2000) test is robust to conditional heteroscedasticity. Sansó et al. (2004) pro-

pose a more general test than that of Kokoszka and Leipus (2000) based on the iterative

cumulative sum of squares (ICSS) algorithm developed by Inclán and Tiao (1994).

Let ei,t = 100× log(Pi,t/Pi,t−1), where Pi,t is the price of the index i at the time t, so

that et is the percent return of the index i from period t −1 to t. {et} is then assumed
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to be a series of independent observations from a normal distribution with zero mean

and unconditional variance σ2
t for t = 1, . . . ,T . Assume that the variance within each

interval is denoted by σ2
j , j = 0,1, . . . ,NT , where NT is the total number of variance

changes and 1< κ1 < κ2 < · · ·< κNT
< T are the set of breakpoints. Then the variances

over the NT intervals are defined as

σ2
t =















































σ2
0, 1 < t < κ1

σ2
1, κ1 < t < κ2

. . .

σ2
NT
, κNT

< t < T

The cumulative sum of squares is used to estimate the number of variance changes and

to detect the point in time of each variance shift. The cumulative sum of the squared

observations from the beginning of the series to the kth point in time is expressed as

Ck = ∑k
t=1 e2

t for k = 1, . . . ,T . To test the null hypothesis of constant unconditional

variance, the Inclán–Tiao statistic is given by:

IT = supk|(T/2)0.5Dk| (7)

where Dk =
(

Ck

CT

)

−
(

k
T

)

, with CT is the sum of the squared residuals from the whole

sample period. The value of k that maximizes |(T/2)0.5Dk| is the estimate of the break

date. The ICSS algorithm systematically looks for breakpoints along the sample. If

there are no variance shifts over the whole sample period, Dk will oscillate around

zero. Otherwise, if there are one or more variance shifts, Dk will deviate from

zero. The asymptotic distribution of the IT statistic is given by supr|W
∗(r)|, where

W ∗(r) =W (r)− rW (1) is a Brownian bridge and W (r) is standard Brownian motion.

Finite-sample critical values can be generated by simulation.

The IT statistic is designed for i.i.d. processes, which is a very strong assumption

for financial data, in which there is evidence of conditional heteroscedasticity. Sansó et

al. (2004) show that the size distortions are important for heteroscedastic conditional

variance processes from Monte Carlo simulations. Their results thus invalidate the

practical use of this test for financial time series. To overcome this problem, Sansó et
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al. (2004) propose a new test that explicitly consider the fourth moment properties

of the disturbances and the conditional heteroscedasticity.4 They propose a non-

parametric adjustment to the IT statistic that allows et to obey a wide class of

dependent processes under the null hypothesis. Consistent with Sansó et al. (2004),

we use a non-parametric adjustment based on the Bartlett kernel, and the adjusted

statistic5 is given by:

AIT = supk|T
−0.5Gk| (8)

where Gk = λ̂−0.5
[

Ck−
(

k
T

)

CT

]

, λ̂= γ̂0+2∑m
l=1

[

1−l(m+1)−1
]

γ̂l , γ̂l =T−1 ∑T
t=l+1(e

2
t −

σ̂2)(e2
t−l − σ̂2), σ̂2 = T−1CT , and the lag truncation parameter m is selected using the

procedure in Newey and West (1994). Under general conditions, the asymptotic dis-

tribution of AIT statistic is also given by supr|W
∗(r)|, and finite-sample critical values

can be generated by simulation.

4 Data and summary statistics

The data of the study consists of the daily closing spot prices for three oil crude

markets: the US West Texas Intermediate (WTI), the UK Brent, and the Organization

of the Petroleum Exporting Countries (OPEC) markets. The data comes from

Thomson Financial Datastream and is given in US dollar per barrel. The data spans

from 1 January, 1985 to 17 June, 2011, namely 6905 observations. Figure 1 provides

a graphical representation of these series.

Table 1 presents summary statistics for the WTI, OPEC and Brent crude oil returns

calculated as the first differences in the logs of the spot prices. The WTI and Brent

4Bacmann and Dubois (2002) show that one way to circumvent this problem is by filtering the return

series by a GARCH (1,1) model, and applying the ICSS algorithm developed by Inclán and Tiao (1994)

to the standardized residuals obtained from the estimation. Fernandez (2006) proposes an alternative

approach to testing for variance homogeneity based on wavelet analysis.
5This adjusted statistic is equivalent to the non-parametric test proposed by Kokoszka and Leipus

(2000).
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markets have approximately equal mean returns of about 0.05% per day, with the Brent

returns marginally smaller than the WTI returns. These two crude oil markets display

higher mean returns than the OPEC market (0.04% per day) but they are also slightly

more volatile, measured by standard deviation (0.024 versus 0.020). All the returns

are highly non-normal, i.e. showing evidence of significant negative skewness and

excess kurtosis, as might be expected from daily returns. All series are leptokurtic

(i.e., fat-tailed distribution) and thus the variance of the crude oil prices is principally

due to infrequent but extreme deviations. The Lagrange Multiplier test for the presence

of the ARCH effect indicates clearly that all crude oil prices show strong conditional

heteroscedasticity, which is a common feature of financial data. In other words, there

are quiet periods with small price changes and turbulent periods with large oscillations.

The outlier-adjusted returns also exhibit excess skewness, excess kurtosis and

conditional heteroscedasticity, although the excess kurtosis decreases dramatically,

except for the OPEC returns that do not display excess skewness. As shown by Carnero

et al. (2001) and Charles and Darné (2005), this result show that outliers may cause

significant skewness.

5 Large shocks in crude oil volatility

5.1 Outliers in crude oil returns

Tables 2–3 give the identified outliers in the returns of the three crude oil markets

in chronological order. In addition, we also associate the date corresponding to each

outlier to a specific (economic, political or financial) event that occurred near that

date. As expected, outliers have been detected in all the series, giving strong proof

of infrequent large shocks. This finding shows the importance to take into account

these large shocks in modelling volatility of returns of the crude oil markets. Given

the clustering of outliers across series, i.e. an event can cause infrequent large shocks

in different crude oil markets, we describe the economic events that could affect the

series chronologically.
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We find patches of outliers due to the Iran-Irak war in March-April and July-August

1986, the invasion of Kuwait by Iraq in August 1990, the Operation Desert Storm in

January 1991, the Operation Desert Fox in December 1998, and the Global Financial

Crisis in December 2008 and January 2009. Most of individual outliers are due to

OPEC announcements, especially production reduction. Hyndman (2008), Lin and

Tamvakis (2010) and Demirer and Kutan (2010) also find that OPEC production cut

announcements have an impact on crude oil prices, using event-study methodology.

More specifically, the WTI returns are affected by US announcements on crude

inventories. Indeed, most WTI crude oil gets refined in the Midwest region of the

US, more precisely at Cushing (Oklahoma), with some more refined within the Gulf

Coast region. Therefore, the WTI price can be affected by its storage tank capacity

and its infrastructure logistics (Horsnell and Mabro, 1993).

5.2 Sudden changes in crude oil volatility

Rodrigues and Rubia (2011) discuss the effects that sample contamination has on the

asymptotic properties of CUSUM-type tests for detecting change points in variance

and characterize the finite sample behavior by means of Monte Carlo simulations.

They focus on additive outliers, that is exogenous changes that directly affect the

series, which prove able to generate large size distortions in these tests. The authors

show that the Sansó et al. (2004) test exhibits low power and tends to find few or no

breaks at all. As suggested by Rodrigues and Rubia (2011), we apply the modified

ICSS algorithm to detect sudden changes in volatility of crude oil prices, using the

outlier-corrected return series.6

The time periods of a shift in volatility as detected by the modified ICSS algorithm

are given in Table 4. This ICSS algorithm identifies variance breaks in the Brent and

OPEC crude oil markets, with two and four shifts, respectively, but not for the WTI

crude oil market from non-adjusted data. However, we do not find variance changes

6Further, Inclán and Tiao (p.917, 1994) advised that “it is advisable to complement the search for

variance changes with a procedure for outlier detection”.
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when the modified ICSS algorithm is applied on outlier-adjusted data. This finding

can be explained by the presence of outliers in crude oil markets, especially by patches

of outliers. For example, the change break detected in the OPEC market in July 1990

is just before a few outliers due to the invasion of Kuwait by Iraq in August 1990. The

variance break in the Brent and OPEC markets in March-April 1991 is just after a few

outliers due to the Operation Desert Storm in January 1991. These results confirm that

the ICSS algorithm is biased by the presence of outliers, and show that the crude oil

markets are more affected by outliers and patches of outliers than by variance changes.

6 Degree of persistence

With the availability of high frequency date for financial markets analysis there has

been an increase in studies dealing with the persistence of shocks on the variance

of financial instrument returns. As underlined by Aragó and Fernandez-Izquierdo

(2003), the degree of persistence of the variance has evident economic implications,

arising from the effect that this aspect has on the predictability of their future

value. The persistence features the degree to which past volatility explains current

volatility. Although volatility clearly fluctuates over time, an important question is

“how persistent are these changes in volatility following some shock?”

There are by now several alternative GARCH type models that attempt to take

volatility persistence appropriately into account, implying quite different measures

for the conditional volatility. In this paper we consider four volatility models: the

Generalized ARCH model (GARCH), the Integrated GARCH model, the Fractionaly

IGARCH (FIGARCH) model, and the hyperbolic GARCH (HYGARCH) model

which are intensively used in the literature to investigate the persistence of shocks

in crude oil markets (e.g., Wei et al., 2010; Kang et al., 2011; Arouri et al., 2012).7

7We will concern ourselves in this paper only with the volatility of univariate series. We will focus on

the volatility of asset returns and consequently will pay very little attention to expected returns. Note that

mispecification of the conditional mean equation appears to have very little influence on the estimated

conditional variance in continuous (Nelson, 1990a and 1990b) as well as discrete time (McKenzie, 1997).
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6.1 The GARCH models

The GARCH model was developed independently by Bollerslev (1986) and Taylor

(1986). The GARCH model allows the conditional variance to be dependent upon

previous own lags.

Consider the returns series εt , which is defined by εt = logPt − logPt−1, where Pt is

the observed price at time t, and consider the GARCH(p,q) model

εt = zt

√

σ2
t ,

εt ∼ N(0,

√

σ2
t ), zt ∼ i.i.d.N(0,1),

σ2
t = ω+α(L)ε2

t +β(L)σ2
t

where L is the lag operator, α(L) = ∑
q
i=1 αiL

i, β(L) = ∑
p
j=1 β jL

j. The parameters

should satisfy ω > 0, αi ≥ 0 and β j ≥ 0 to guarantee the positivity of the conditional

variance.8

The stationary of the process is achieved when the restriction ∑
q
i αi +∑

p
j β j < 1 is

satisfied. Ling and McAleer (2002a, 2002b) have derived the regularity conditions

of a GARCH(1,1) model, defined as follows: E[ε2
t ] = α1 + β1 < 1 and E[ε4

t ] =

3α2
1 + 2α1β1 +β2

1 < 1. Ng and McAleer (2004) show the importance to verify these

conditions.9

The sum of αi and β j quantifies the persistence of shocks to conditional variance,

meaning that the effect of a volatility shock vanishes over time at an exponential rate.

The GARCH models are short-term memory which define explicitly an intertemporal

causal dependence based on a past time path. In such model, the probability of a price

increasing or decreasing is a function of both the current state of the price but also the

prices assumed in the previous instants.

8Nelson and Cao (1992) show that the restrictions imposed by Bollerslev (1986), i.e. the non-

negativity of all parameters in the condition variance specification, can be substantially relaxed. They

derive necessary and sufficient conditions for p ≤ 2 and sufficient conditions for p > 2. More specifically,

some of the parameters are allowed to have negative sign. Note that the Nelson and Cao (1992) conditions

are implemented in econometric packages such as G@RCH package for Ox.
9Note the fourth moment condition is not satisfied for the GARCH(1,1) models estimated by Arouri

et al. (2012) and Vivian and Wohar (2012).
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6.2 The Integrated GARCH models

In many high-frequency time-series applications, the conditional variance estimated

using a GARCH(p,q) process exhibits a strong persistence that is described as follows:

q

∑
i=1

αi +
p

∑
j=1

β j ≈ 1

Defining υt = ε2
t −σ2

t , the GARCH(p,q) model may be rewritten as an ARMA(p,q)

process:

σ2
t = ω+α(L)ε2

t +β(L)σ2
t

[1−α(L)−β(L)]ε2
t = ω+[1−β(L)]υt

Allowing for the presence of a unit root in [1−α(L)−β(L)] (the sum of αi and β j is

equal to one), Engle and Bollerslev (1986) defined the IGARCH(p,q) process:

(1−L)φ(L)ε2
t = ω+[1−β(L)]υt

σ2
t = ω[1−B(L)]−1 +

{

1−φ(L)(1−L)[1−β(L)]−1
}

ε2
t

where φ(L) = [1−α(L)−β(L)](1−L)−1.

The unconditional variance of an IGARCH model is not finite, implying a complete

persistence of such a shock that is multiperiod forecasts of volatility will tend upwards.

Recently, it has been suggested that either long memory (Mikosch and Starica, 2004)

or parameter changes (Hillebrand, 2005) in the data generating process can give the

impression of IGARCH model.

6.3 The Fractionally Integrated GARCH models

A GARCH model features an exponential decay in the autocorrelation of conditional

variances. However, it has been noted that squared and absolute returns of financial

assets typically have serial correlations that are slow to decay similar to those of an

I(d) process. A shock in the volatility series seems to have very long memory and

impact on future volatility over a long horizon. The IGARCH model captures this
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effect but a shock in this model impacts upon future volatility over an infinite horizon

and the unconditional variance does not exist for this model. This model implies that

shocks to the conditional variance persist indefinitely and this is difficult to reconcile

with the persistence observed after large shocks, such as the crash of October 1987,

and also with the perceived behaviour of agents who do not appear to frequently and

radically alter the composition of their portfolios, as would be implied by IGARCH

(Mills, 1990). So the widespread observation of the IGARCH behaviour may be an

artefact of a long memory.

Baillie, Bollerslev and Mikkelsen (1996) introduce the Fractionally Integrated

GARCH (FIGARCH) which encompasses the possibility of persistent but not

necessarily permanent shocks to volatility. The FIGARCH(p,d,q) process is then

defined as follows:

(1−L)dφ(L)ε2
t = ω+[1−β(L)]υt

σ2
t = ω[1−β(L)]−1 +

{

1− [1−β(L)]−1φ(L)(1−L)d
}

ε2
t

where 0≤ d ≤ 1, ω> 0, 0≤ φi < 1, 0≤ βi < 1; d is the fractional difference parameter,

and (1− L)d is the fractional difference operator.10 Conrad and Haag (2006) have

derived necessary and sufficient conditions for the non-negativity of the conditional

variance in the FIGARCH model of the order p ≤ 2 and sufficient conditions for

p > 2.11

Interestingly, the FIGARCH(1,d,1) model nests the GARCH(1,1) model for d = 0 and

the IGARCH model for d = 1. As advocated by Baillie et al. (1996), the IGARCH

process may be seen as too restrictive as it implies infinite persistence of a volatility

shock. Such a dynamics contradicts stylized facts (see Baillie et al., 1996; Bollerslev

10Chung (2001) underscores some drawbacks in the Baillie et al. (1996) FIGARCH model, leading to

difficult interpretations of the estimated parameters. He proposes a slightly different FIGARCH process

and expresses the following sufficient conditions: 0 ≤ φ1 ≤ β1 ≤ d ≤ 1 to ensure positivity of conditional

variances of FIGARCH(1,d,1) model. However, these conditions are not observed for all the series of

interest.
11Conrad and Haag (2006) show that their conditions for the FIGARCH(1,d,1) model substantially

enlarge the sufficient parameter set provided by Bollerslev and Mikkelsen (1996).
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and Engle, 1993). By contrast, for 0 < d < 1, the FIGARCH model implies a long-

memory behavior and a slow rate of decay after a volatility shock. The autocorrelation

of conditional variances decays at an hyperbolic, rather than an exponential (as in an

IGARCH model), rate, so that the fractional differencing parameter provides important

information about the pattern and speed with which shocks to volatility are propagated.

In these processes, shocks to the conditional variance decay at a slow hyperbolic rate

which is more strongly supported by financial data than the GARCH model. This

means that the effect of a volatility shock is mean reverting but is quite persistent.

6.4 The Hyperbolic GARCH models

Another long-memory model of the conditional variance which generalizes the

FIGARCH model is the hyperbolic GARCH (HYGARCH) model of Davidson (2004),

which can be viewed as a two-component GARCH specification with one component

being GARCH and the other being FIGARCH. The HYGARCH model permits

the existence of second moments at more extreme amplitudes compared with the

simple IGARCH and FIGARCH models. Thus, the HYGARCH model is covariance

stationary while the IGARCH and FIGARCH models are not covariance stationary.

The HYGARCH(p,d,q) model is given by:

σ2
t = ω[1−β(L)]−1 +

{

1− [1−β(L)]−1φ(L)(1+ k)
[

(1−L)d −1
]}

ε2
t

where k ≥ 0 and d ≥ 0. The HYGARCH model nests the FIGARCH and GARCH

models when k = 1 and k = 0, respectively. For 0 < k < 1 this process is stationary,

while for k > 1 it implies that this process is non-stationary. The HYGARCH model

allows to combine the desired properties of hyperbolically decaying impulse response

coefficients and covariance stationary. Recently, Conrad (2010) has derived non-

negativity conditions for HYGARCH model which are necessary and sufficient for

p = 1 and sufficient for p ≥ 2.12

12Conrad (2010) advise that these non-negativity conditions “are a first inevitable check of model

validation”.
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6.5 Results of the persistence estimates

In this section we compare estimates of the four volatility models (GARCH, IGARCH,

FIGARCH and HYGARCH) from three ways: (1) original data; (2) original data with

structural breaks identified from the modified ICSS algorithm; and (3) outlier-adjusted

data. For the second approach, we introduce identified breaks into the GARCH

and IGARCH models by incorporating dummy variables that take a value of one

from each point of structural change of variance onwards and take a value of zero

elsewhere.13 Indeed, it is well known that structural changes tends to overestimate

volatility persistence (Lamoureux and Lastrapes, 1990). As no restrictions are placed

on the dummy effects, it is necessary to check that the variance is always positive.

The existence of the long memory assume, a priori, that returns series has constant

unconditional variance. Investigating long memory with unstable unconditional

variance will give deviated results. In this study, to make unconditional variance stable

we follow the method proposed by Nouira et al. (2004), i.e. series are filtered as

follows: r∗t = rt/
√

σ̂2
t where σ̂2

t is estimated over each of the intervals limited by

regime-shift points of the unconditional variance.

The comparison between the volatility models is evaluated from various in-sample cri-

teria: LogLikehood (LL), Akaike (AIC), Hannan-Quinn (HQ) and stochastic complex-

ity (RCL) (Rissanen, 1987) criteria.14 Caporin (2003) show that information criteria

can clearly distinguish between long and short memory data generating processes.

Mitchell and McKenzie (2003, 2008) find that the HQ and RCL criteria exhibit a

clear superiority in their ability to accurately select the correct model for ARCH and

GARCH processes.15

13The estimates of dummies variables are not reported to save space, but they are all significant and

available from the authors upon request.
14The out-of-sample comparison is beyond the scope of this study. Future research is encouraged to

address this issue.
15Mitchell and McKenzie (2008) also empirically assess the relative merits of the HQ and RCL criteria

versus the Hansen and Lunde (2005) test.

19



Tables 5-12 provide the initial estimation results for the GARCH, IGARCH, FI-

GARCH and HYGARCH models. The parameters of the volatility models are es-

timated by maximizing the log-likelihood function from the Berndt et al. (1974)

(BHHH) algorithm.16 For each Table, the best model are given in bold face, owing

to the higher value of the LL, and the lower values of the AIC, HQ and RCL. The

residuals tests are also reported to check if the chosen volatility model is the most

appropriated. Note that the estimation of the GARCH(1,1), FIGARCH(1,d,1) and

HYGARCH(1,d,1) models is not reported for some return series because the regular-

ity and non-negativity conditions are not observed. Further, the estimated HYGARCH

models are not discussed because the parameter k is never significant.

Original data. The IGARCH process captures the best temporal pattern of volatil-

ity for the three return series (Tables 5, 8 and 11, respectively). This model outper-

forms FIGARCH model for Brent returns, implying that the shocks to the conditional

variance persist indefinitely (Table 5). For the OPEC and WTI returns, the GARCH,

FIGARCH and HYGARCH models do not satisfy the regularity and non-negativity

conditions, suggesting that structural breaks and/or outliers can bias these conditions.

Original data with dummies. Tables 6 and 9 show that the Brent and OPEC re-

turn series are better modelled by a FIGARCH model exhibiting thus long memory.

This result confirm those of Lamoureux and Lastrapes (1990), Mikosch and Starica

(2004) and Hillebrand (2005), among others, showing that structural breaks in volatil-

ity can bias the estimated persistence of volatility. The parameter d, i.e. the degree

of fractional integration, is highly significantly different both from 0 and 1, rejecting

the validity of both the GARCH and the IGARCH specifications.17 This implies that

16To estimate and forecast these indexes, we use G@RCH 6.0 for Ox (Laurent and Peters, 2001), a

package dedicated to the estimation and the forecasting of GARCH models and many of their extensions.
17We test the persistence of the volatility model using the Wald statistics, that is α+β = 1 for GARCH

models and d = 0 and d = 1 for FIGARCH models. Results are not reported to save space but they are

available from the authors upon request.
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the process is said to exhibit long memory, a characteristic in financial time series in

which the dependence between distant observations is not negligible. For the Brent

returns (Table 6), the degree of fractional integration is smaller for the filtered series

(d = 0.578) than for the original data set (d = 0.653). This supports that long-range

dependence may be due to the presence of structural.

Outlier-adjusted data. For the Brent return series, the short-memory (GARCH

model) appears to be the most relevant to fit the data (Table 7). Consequently, the

effect of a volatility shock vanishes over time at an exponential rate. This finding

implies that the presence of outlier bias the estimation of the volatility persistence.

However, the short-term persistence falls slightly (α+ β = 0.99). Tables 10 and 12

display that the better specification of OPEC and WTI return series is the IGARCH

model. Nevertheless, the value of α decreases and the value of β increase when the data

are cleaned of outliers. This result may be explained by the fact that identified outliers

are consecutive (Carnero et al., 2001). For these return series, the GARCH, FIGARCH

and HYGARCH models do not satisfy the regularity and non-negativity conditions,

suggesting that outliers can bias these conditions. This finding confirms that of Ng and

McAleer (2004), showing that the additive outliers can affect the moment conditions

of GARCH models.18

7 Conclusion

This study assessed the impact of structural changes and outliers on volatility

persistence of three crude oil markets (Brent, OPEC and WTI). Given the importance

of measuring the degree to which past volatilities determine and explain the current

volatility, a careful investigation of various possible explanations on this fact should

18Haldrup and Nielsen (2007) show that an additive outlier may substantially bias the differencing

parameter estimate in ARFIMA processes. Carnero et al. (2007, 2012) and Ng and McAleer (2004)

who show that the QML estimators can be severally affected by additive outliers, i.e. both the GARCH

parameters can be overestimated or underestimated.
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be carried out, with emphasis on the understanding of the statistical subtleties of this

issue.

Firstly, we identified the time points at which structural changes occurred using the

modified ICSS test developed by Sansó et al. (2004) and then incorporated this

information into the volatility modeling. Our results indicated that the degree of

persistence of volatility was reduced by incorporating the variance changes into the

volatility model. Secondly, we identified outliers using intervention analysis and

conditional heteroscedasticity model. These large shocks can be associated with

particular event patterns, such as the invasion of Kuwait by Iraq, the Operation Desert

Storm, the Operation Desert Fox, and the Global Financial Crisis as well as OPEC

announcements on production reduction or US announcements on crude inventories.

We found that the crude oil markets are more affected by outliers and patches of

outliers than by variance changes. We also showed that outliers can bias the estimation

of the persistence of the volatility. Taking into account outliers on the volatility

modelling process improve the understanding of volatility in crude oil markets.

Further research would be to compare the forecasting accuracy of volatility models

that take or not into account the presence of structural changes and outliers, using

out-of-sample criteria.
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Figure 1: Daily returns of Brent, OPEC and WTI crude oil markets.
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Table 1: Summary statistics of crude oil markets.

Series Mean (%) St. dev. Min. Max. Skewness Excess Kurtosis LM(10)

Non-adjusted data

Brent 0.0501 0.024 -0.355 0.214 -0.163∗ 14.7∗ 2590.9∗

OPEC 0.0400 0.020 -0.349 0.263 -0.321∗ 24.6∗ 2590.9∗

WTI 0.0485 0.024 -0.340 0.258 -0.062∗ 12.3∗ 2590.9∗

Adjusted data

Brent 0.0351 0.018 -0.081 0.083 -0.185∗ 2.19∗ 2590.9∗

OPEC 0.0468 0.022 -0.098 0.104 -0.001 2.23∗ 2590.9∗

WTI 0.0420 0.022 -0.104 0.106 -0.078∗ 2.31∗ 2590.9∗

Notes: ∗∗ mean significant at 5% level.
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Table 2: Outliers in volatility of crude oil markets.

Date of outliers Markets Events

12/10/1985 OPEC, WTI OPEC decision to expand its share of world oil markets

02/03/1986 Brent Doubt on OPEC to stabilize oil prices

after the failure of an agreement on production

03/24/1986 Brent OPEC meeting without an agreement on production ceilings

03/31/1986 Brent Prediction of further decline of oil prices by the United Arab

Emirates’ oil minister

04/01/1986 Brent Plan by Vice President George Bush to discuss oil-price stability

with Saudi Arabian officials

04/07/1986 Brent, OPEC, WTI The Reagan administration is reconsidering its proposal to stop

buying oil for the nation’s Strategic Petroleum Reserve

04/08/1986 OPEC, WTI Soviet Union raises exports to West

05/23/1986 WTI Growing tensions in the Mideast

07/08/1986 OPEC OPEC report on supply buildup

07/16/1986 Brent Statement by Saudi Arabian King Fahd urging stability

in the world oil markets

07/22/1986 WTI Doubt on OPEC actions to curb runaway production

08/04/1986 Brent, OPEC, WTI OPEC report on possible reduction of production

08/05/1986 Brent, OPEC Boycott Libyan Oil

10/30/1986 OPEC Saudi Arabian oil minister called for an emergency

price-level OPEC meeting

01/01/1987 Brent OPEC agreement on production

12/22/1987 Brent, OPEC OPEC report on cutting back production

10/24/1988 Brent, OPEC, WTI Leading OPEC oil ministers pledge to limit production

11/25/1988 Brent, OPEC, WTI Possible agreement between Iran and Iraq on oil quotas

08/02/1990 Brent, OPEC, WTI Invasion of Kuwait by Iraq

08/06/1990 Brent, OPEC, WTI Economic sanctions against Iraq by the UN Security Council

08/08/1990 OPEC President Saddam Hussein proclaims annexation of Kuwait

09/24/1990 Brent, OPEC, WTI Iraq invades the French and Dutch missions in Kuwait

Threat of Saddam Hussein to attack Israel

and to destroy the oil wells

11/30/1990 Brent, OPEC, WTI Diplomatic initiative by President George Bush
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Table 3: Outliers in volatility of crude oil markets.

Date of outliers Markets Events

01/17/1991 Brent, OPEC, WTI Beginning of Operation Desert Storm

01/18/1991 OPEC Danger of Iraqi offensive against Saudi Arabian

Iraqi Scud missiles land in Israel

oil infrastructure is discarded

01/22/1991 Brent, OPEC, WTI Destruction by Iraq of Kuwaiti oil installations

Iraqi missile attacks on Saudi Arabia

02/15/1991 Brent, OPEC Iraki proposal to withdraw from Kuwait is failed

03/23/1998 Brent, OPEC, WTI OPEC agreement to reduce production

06/22/1998 WTI Further reductions in OPEC production

12/16/1998 Brent, OPEC, WTI Beginning of Operation Desert Fox

12/17/1998 Brent, OPEC, WTI Iraqi oil installations are not aimed by American missiles

10/12/2000 Brent Threat of an Arab-Israeli war

Terrorist attack on an American warship in Yemen

09/24/2001 Brent, OPEC, WTI Fear of a sharp drop in demand

11/15/2001 OPEC OPEC decide to reduce its production as long as

non-OPEC members also reduce their production

12/28/2001 WTI OPEC decides to reduce its production

01/03/2003 Brent Decline in US crude inventories and

oil industry strike in Venezuela

04/23/2003 WTI Unexpected rise in US crude inventories

12/30/2004 Brent Terrorist attack in Saudi Arabia

12/22/2008 WTI Recovery of storage capacity at Cushing

12/29/2008 WTI Israeli attacks on Gaza

01/02/2009 OPEC, WTI Possible extraordinary OPEC meeting on oil prices in February

01/05/2009 Brent, OPEC Spike in oil consumption due to cold, and Russian-Ukrainian dispute

01/07/2009 WTI Rise in US crude inventories

01/21/2009 Brent, WTI Possibility of further production cuts at the next OPEC meeting

01/27/2009 Brent OPEC decides to keep strict production quotas whereas investors

estimate that demand could remain higher than supply

02/13/2009 WTI High US crude inventories

02/19/2009 WTI Surprise drop in US crude inventories
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Table 4: Sudden changes in volatility

Series Nb. of Date of Series Nb. of Date of

change points change break change points change break

Non-adjusted data Adjusted data

Brent 2 19/03/1991 Brent 0

08/01/1996

OPEC 4 11/07/1990 OPEC 0

18/04/1991

12/02/1996

09/04/2009

WTI 0 WTI 0
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Table 5: Estimates of volatility models

GARCH(1,1)a IGARCH FIGARCH HYGARCH

Brent: original data

Parameters

α nc 0.081735∗∗

β nc 0.918265 0.724955∗∗ 0.727120∗∗

α+β nc 1

φ 0.157407∗∗ 0.155730∗∗

d 0.653362∗∗ 0.658483∗∗

k -0.002387

In-sample criteriab

LL nc -14856.297 -14857.962 nc

AIC nc 4.305171 4.306233 nc

HQ nc 4.306561 4.307941 nc

RCL nc 4.305752 4.306976 nc

Residuals testsc

Q(10) nc 14.9692∗∗ 14.8722∗∗ nc

Q2(10) nc 8.81817∗∗ 9.51307∗∗ nc

LM(10) nc 0.87572∗∗ 0.93307∗∗ nc

Notes: nc means “not computed”. a The condition for existence of the fourth moment of the GARCH is not observed

(Ling and McAleer, 2001). b LL is the log-likehood value, AIC, HQ and RCL correspond to the Akaike, Hannan-

Quinn and Rissanen criteria, respectively. c Q(10) and Q2(10) are respectively the Box Pierce statistics at lag 10 of

the standardized and squared standardized residuals. They are asymptotically distributed as χ2(k) where k is the lag

length. LM(10) is the ARCH LM test at lag 10. It is distributed as χ2(q) where q is the lag length. ∗∗ indicates that

the null hypothesis is rejected at 5% level.
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Table 6: Estimates of volatility models

GARCH(1,1) IGARCH FIGARCH HYGARCH

Brent: original data with break

Parameters

α 0.079796∗∗ 0.084822∗∗

β 0.911640∗∗ 0.915178 0.661326∗∗ 0.672528∗∗

α+β 0.99144 1

φ 0.168242∗∗ 0.157505∗∗

d 0.577992∗∗ 0.613511∗∗

k -0.027338

In-sample criteriab

LL -14848.252 -14852.361 -14845.737 nc

AIC 4.303999 4.304899 4.303560 nc

HQ 4.310935 4.310844 4.306293 nc

RCL 4.303421 4.304249 4.303061 nc

Residuals testsc

Q(10) 14.8418∗∗ 14.9046∗∗ 14.6965∗∗ nc

Q2(10) 9.11291∗∗ 8.94417∗∗ 8.30482∗∗ nc

LM(10) 0.90739∗∗ 0.89195∗∗ 0.82408∗∗ nc

Notes: nc means “not computed”. The GARCH, IGARCH and FIGARCH processes are estimated with dummies

variable to take into account the variance changes detected with the modified ICSS test. b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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Table 7: Estimates of volatility models

GARCH(1,1) IGARCH FIGARCH HYGARCH

Brent: outlier-corrected data

Parameters

α 0.056744∗ 0.060541∗

β 0.937822∗ 0.939459 0.664473∗∗ 0.657221∗∗

α+β 0.99457 1

φ 0.224818∗∗ 0.228448∗∗

d 0.502948∗∗ 0.488456∗∗

k 0.007449

In-sample criteria2

LL -14534.534 -14538.240 -14550.365 nc

AIC 4.212237 4.213020 4.217113 nc

HQ 4.215993 4.216200 4.218821 nc

RCL 4.212528 4.213239 4.217483 nc

Residuals tests3

Q(10) 16.8329∗∗ 16.7837∗∗∗ 17.0103∗∗ nc

Q2(10) 11.6283∗ 11.8861∗ 9.41011∗ nc

LM(10) 1.1200∗ 1.1480∗ 0.91929∗ nc

Notes: nc means “not computed”. b LL is the log-likehood value, AIC, HQ and RCL correspond to the Akaike,

Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and Q2(10) are respectively the Box Pierce statistics at lag

10 of the standardized and squared standardized residuals. They are asymptotically distributed as χ2(k) where k is the

lag length. LM(10) is the ARCH LM test at lag 10. It is distributed as χ2(q) where q is the lag length. ∗∗ indicates that

the null hypothesis is rejected at 5% level.
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Table 8: Estimates of volatility models

GARCH(1,1)a IGARCH FIGARCHd HYGARCHe

OPEC: original data

Parameters

α nc 0.110099∗∗

β nc 0.889901 nc nc

α+β nc 1

φ nc nc

d nc nc

k nc

In-sample criteriab

LL nc -13264.773 nc nc

AIC nc 3.844060 nc nc

HQ nc 3.847033 nc nc

RCL nc 3.844278 nc nc

Residuals testsc

Q(10) nc 16.6389∗∗ nc nc

Q2(10) nc 17.9963∗∗ nc nc

LM(10) nc 2.1914∗∗ nc nc

Notes: nc means “not computed”. a The condition for existence of the fourth moment of the GARCH is not observed

(Ling and McAleer, 2001). d Positivity constraints of the FIGARCH specification are not valid (Conrad and Haag,

2006). e Positivity constraints of the HYGARCH specification are not valid (Conrad, 2010). b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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Table 9: Estimates of volatility models

GARCH(1,1) IGARCH FIGARCH HYGARCH

OPEC: original data with break

Parameters

α 0.132652∗ 0.132893∗

β 0.867031∗ 0.867107 0.626949∗ 0.620167∗

α+β 0.99968 1

φ 0.109327∗∗ 0.108868∗∗

d 0.675902∗ 0.674327∗

k -0.014240

In-sample criteriab

LL -13225.816 -13225.819 -13212.8 nc

AIC 3.834511 3.834223 3.831021 nc

HQ 3.843429 3.842149 3.834437 nc

RCL 3.833354 3.832992 3.829952 nc

Residuals testsc

Q(10) 16.8265∗∗ 16.7989∗∗ 194.222∗ nc

Q2(10) 17.7919∗∗ 17.7849∗∗ 18.1988∗ nc

LM(10) 1.7921∗∗ 1.7908∗∗ 1.7706∗∗ nc

Notes: nc means “not computed”. The GARCH, IGARCH and FIGARCH processes are estimated with dummies

variable to take into account the variance changes detected with the modified ICSS test. b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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Table 10: Estimates of volatility models

GARCH(1,1)a IGARCH FIGARCHd HYGARCHe

OPEC: outlier-corrected data

Parameters

α nc 0.080527∗

β nc 0.919473 nc nc

α+β nc 1

φ nc nc

d nc nc

k nc

In-sample criteriab

LL nc -12920.083 nc nc

AIC nc 3.744193 nc nc

HQ nc 3.747166 nc nc

RCL nc 3.744411 nc nc

Residuals testsc

Q(10) nc 17.5234∗∗ nc nc

Q2(10) nc 16.2356∗∗ nc nc

LM(10) nc 1.9769 nc nc

Notes: nc means “not computed”. a The condition for existence of the fourth moment of the GARCH is not observed

(Ling and McAleer, 2001). d Positivity constraints of the FIGARCH specification are not valid (Conrad and Haag,

2006). e Positivity constraints of the HYGARCH specification are not valid (Conrad, 2010). b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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Table 11: Estimates of volatility models

GARCH(1,1)a IGARCH FIGARCHd HYGARCHe

WTI: original data

Parameters

α nc 0.083692∗

β nc 0.916308 nc nc

α+β nc 1

φ nc nc

d nc nc

k nc

In-sample criteriab

LL nc -14893.7 nc nc

AIC nc 4.316005 nc nc

HQ nc 4.317030 nc nc

RCL nc 4.316226 nc nc

Residuals testsc

Q(10) nc 12.7735∗∗ nc nc

Q2(10) nc 15.8145∗ nc nc

LM(10) nc 1.5600∗∗ nc nc

Notes: nc means “not computed”. a The condition for existence of the fourth moment of the GARCH is not observed

(Ling and McAleer, 2001). d Positivity constraints of the FIGARCH specification are not valid (Conrad and Haag,

2006). e Positivity constraints of the HYGARCH specification are not valid (Conrad, 2010). b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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Table 12: Estimates of volatility models

GARCH(1,1)a IGARCH FIGARCHd HYGARCHE

WTI: outlier-corrected data

Parameters

α nc 0.065640∗∗

β nc 0.934360 nc nc

α+β nc 1

φ nc nc

d nc nc

k nc

In-sample criteriab

LL nc -14622.221 nc nc

AIC nc 4.237352 nc nc

HQ nc 4.238377 nc nc

RCL nc 4.237570 nc nc

Residuals testsc

Q(10) nc 9.18690∗∗ nc nc

Q2(10) nc 14.5041∗∗ nc nc

LM(10) nc 1.4476∗∗ nc nc

Notes: nc means “not computed”. a The condition for existence of the fourth moment of the GARCH is not observed

(Ling and McAleer, 2001). d Positivity constraints of the FIGARCH specification are not valid (Conrad and Haag,

2006). e Positivity constraints of the HYGARCH specification are not valid (Conrad, 2010). b LL is the log-likehood

value, AIC, HQ and RCL correspond to the Akaike, Hannan-Quinn and Rissanen criteria, respectively. c Q(10) and

Q2(10) are respectively the Box Pierce statistics at lag 10 of the standardized and squared standardized residuals.

They are asymptotically distributed as χ2(k) where k is the lag length. LM(10) is the ARCH LM test at lag 10. It is

distributed as χ2(q) where q is the lag length. ∗∗ indicates that the null hypothesis is rejected at 5% level.
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