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ABSTRACT 
 

Benford’s law states that the frequency of first significant digit in certain samples decreases as 
those digits increase. This law is used in accounting to find rounding behavior. Several studies 
provided evidence that firms may round up earnings when they are just below reference points 
denoted by Nx10k. Most studies are focused on earnings variables. Few studies are focused on 
other accounting variables like sales for example (Jordan & Alii, 2009; Geyer, 2012). No previous 
study examines accounting variable from balance sheet (excepted earnings of course). The aim of 
this short paper is to investigate rounding behavior of long term debt. Using a sample of US 
public companies, we observe that US firms round down the total long term debt considering two 
cognitive points: Nx10k and (2xN+1)x5x10j (N is an integer between 1 to 9; k is an integer from 1 
and j is an integer from 0). In other words, US public firms exercise Cosmetic Debt Management. 

 
Keywords:  Cosmetic Debt Management; Benford’s Law; Rounding Behavior 
 
 
1. INTRODUCTION 
 

igital analysis is an audit technique that is applied to data sets to detect data anomalies. This 
technique uses Benford’s law which gives the expected patterns of the digits in tabulated data. In the 
accounting literature, digital analysis reveals rounding behavior by comparing the expected 

frequencies of Benford’s law and the actual frequencies of the reported accounting data. For example, a public firm 
has a positive earnings of $3,990,000. The managers of the firm are motivated to round up earnings to $4,000,000 
because the stakeholders would perceive reported earnings of $4,000,000 as being significantly better than reported 
earnings of $3,990,000. Consider a sample of positive earnings from a population of public companies. If many 
managers have the same rounding up behavior, digital analysis will show more zeros and fewer nines as second of 
positive earnings than could be expected under randomness. Kinnunen and Koskela (2003) described such practice 
as Cosmetic Earnings Management. Most prior studies in the accounting literature consider earnings or sales to 
study rounding behavior. No previous study examines rounding behavior from a debt item. 
 

The purpose of this paper is to search inconsistencies in the patterns of the total long term debt (hereafter 
TLTD) numbers for a sample of U.S. public companies. In other words, we are searching for rounding behavior. 
 

The results indicate that U.S. firms round down the long term debt in 2010 and 2011. Unlike previous 
studies, we find two cognitive points: Nx10k and (2xN+1)x5x10j (N is an integer between 1 to 9; k is an integer from 
1 and j is an integer from 0). These results are not due to chance because we do not observe this rounding down 
behavior for the control variable total assets. 
 

The remainder of the paper is organized as follows. In Section 2, we present Benford’s law which is useful 
to detect unusual patterns in data. A brief overview of the previous literature on the phenomenon of rounding 
behavior of accounting data is presented in Section 3. The methodology and the sample selection procedures are 
discussed in Section 4. In Section 5, we present this study’s empirical results. Conclusions and limitations of the 
study are exposed in Section 6. 
 
 

D 
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2. BENFORD’S LAW AND DIGITAL ANALYSIS 
 

In this short paper, we submit the TLTD data from a sample of US public companies to digital analysis. In 
order to test the hypothesis of rounding behavior of this data, we need to compare the expected frequencies of the 
digits of TLTD with the actual frequencies. However, the true distribution of the digits absent of managerial 
manipulation of reported TLTD is not publicly observable. So we need a theoretical distribution for the comparison. 
Benford’s law provides such a theoretical distribution. If asked to give the probability of getting a TLTD number 
with a first significant digit of 1 from a sample of US public companies’ TLTD, most would incorrectly say 1/9 (the 
probability is 1/9 because the first significant digit is between 1 to 9; 0 cannot be the first digit). This answer 
assumes that the first significant digits of TLTD numbers are equally likely. But it isn’t the case. Benford (1938) 
observed that in many data sets the leading significant digit is not uniformly distributed among the digits (from 1 to 
9) as one might expect; rather the lower digits appear much more frequently than the higher ones. 
 

He proposes the following equation to calculate the probability that a number has a certain first digit a (for 
example, the three numbers 12, 158, and 1,899 have the same first digit 1): 
 
Equation 1: P(first digit = a) = log10 (1+a-1) with a is an integer between 1 to 9. 
 

Hence, the probability of getting a number with 1 as first digit is: 
 
P(first digit = 1) = log10 (1+1-1) = 0.30103 
 

The previous equation is extended to the general law given by: 
 
Equation 2: P(D1 …Dk = d1… dk) = log10 (1+( d1… dk)

-1) 
 

For example, the probability of getting a number with the first two digits of 23 is: 
 
P(D1D2 = 23) = log10 (1+(23)-1) = 0.01848 
 

To determine the probability to have 1 as second digit, Equation 2 gives: 
 
P(D1D2 = 11) + P(D1D2 = 21) +  P(D1D2 = 31) + P(D1D2 = 41) +  P(D1D2 = 51) + P(D1D2 = 61) + P(D1D2 = 71) + 
P(D1D2 = 81) + P(D1D2 = 91) = 0.11389 
 

Table 1 exhibits the frequencies for the first and the second digit in a data set which obeys Benford’s law. 
 

Table 1: Benford’s Law: Expected Digital Frequencies 

 Position in Number 
Digit 1st 2nd 

0 
 

11.968 
1 30.103 11.389 
2 17.609 10.882 
3 12.494 10.433 
4 9.691 10.031 
5 7.918 9.668 
6 6.695 9.337 
7 5.799 9.035 
8 5.115 8.757 
9 4.576 8.500 

 
The range between the first digit 1 and the first digit 9 is large because it represents 25.5% (30.103% - 

4.576%). But for the second digit, the range decreases to 3.5% (11.968% - 8.5%). Moreover, from the fifth digit, the 
frequencies are 10 percent for the ten digits. 
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Table 2 shows an example of an accounting variable – total assets – which follows Benford’s law. The 
sample concerns the total assets numbers of US Public Firms in 2010 and 2011. In 2010 and 2011, the frequencies 
of the ten second digits are not significantly different from their expectation 19 times out of 20. We find only in 
2010 more eights as second digits than could be expected under randomness (p-value = 0.038). But this excess alone 
doesn’t constitute a rounding behavior because there are not more zeros as second digits than could be expected 
under randomness. As can be seen from Table 2, the observed frequencies of the first digits of Total Assets are very 
close to Benford’s theoretical frequencies. The Chi-square test isn’t significant at 10 percent level in 2010 and 2011. 
 

Table 2: Frequency of First Digits for Total Assets 

Digit No. of times digit 
occurs in 1st position 

Observed frequency 
(%) 

Expected 
Frequency (%) Z value P value 

 

1 
2010 1,462 29.685 

30.103 
-0.639 0.523 

 
2011 1,210 29.936 -0.232 0.817 

 
2 

2010 909 18.457 
17.609 

1.562 0.118 
 

2011 693 17.145 -0.774 0.439 
 

3 
2010 634 12.873 

12.494 
0.805 0.421 

 
2011 519 12.840 0.666 0.506 

 
4 

2010 481 9.766 
9.691 

0.179 0.858 
 

2011 424 10.490 1.717 0.086 
 

5 
2010 376 7.635 

7.918 
-0.737 0.461 

 
2011 297 7.348 -1.342 0.179 

 
6 

2010 298 6.051 
6.695 

-1.809 0.071 
 

2011 283 7.001 0.780 0.436 
 

7 
2010 275 5.584 

5.799 
-0.646 0.518 

 
2011 217 5.369 -1.171 0.242 

 
8 

2010 284 5.766 
5.115 

2.075 0.038 
 

2011 217 5.369 0.732 0.464 
 

9 
2010 206 4.183 

4.576 
-1.321 0.187 

 
2011 182 4.503 -0.223 0.823 

 
Total 

2010 4,925 Chi-square 12.589 Degrees of freedom 8 P-value 0.127 
2011 4,042 Chi-square 7.654 Degrees of freedom 8 P-value 0.468 

 
Of course all data sets do not conform to Benford’s Law. Durtschi et al. (2004) distinguish several cases in 

accounting and auditing when Benford Analysis is not likely useful: 
  Data set is comprised of assigned numbers (examples: check numbers, invoice numbers, zip codes)  Numbers that are influenced by human thought (examples: prices set at psychological thresholds, ATM 

withdrawals)  Accounts with a large number of firm-specific numbers (example: an account specifically set up to record $ 
100 refunds)  Accounts with a built in minimum or maximum (example: set of assets that must meet a threshold to be 
recorded) 

 
3. LITERATURE REVIEW 
 

To detect rounding behavior or fraud in accounting data, once compared the digit distribution of the data 
set with the theoretical distribution of Benford’s law. If the accounting data set isn’t conformed to Benford’s law, 
there is some level of suspicion. In the literature review, we consider only rounding behavior of accounting data 
extracted from the financial statements. However, Benford’s law is used to analyze other kind of data: Tax returns 
on the U.S. Internal Revenue Service Individual Tax Model Files (Nigrini, 1996), scientific data (Diekman, 2007), 
survey data (Judge & Schechter, 2009), etc. 
 

Carlslaw (1988) is the first who detects rounding behavior in accounting. He finds a higher than expected 
frequency of zero and a lower expected frequency of nine as the second digit in reported earnings in a sample of 
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New Zealand firms. The aim of this round up behavior is to achieve a key cognitive reference points of Nx10k. For 
example, earnings of $799,000 may be perceived by investors to be much lower than $800,000. So managers have 
incentives to report rounded earnings to change the behavior of investors. Thomas (1989) finds similar patterns in 
reported earnings for US firms. He extends his analysis at the per share level and noted that multiples of 5 cents and 
10 cents are considerably more often observed than other numbers. 
 

After this two pioneering studies, several papers examine rounding behavior of other accounting data or 
other countries (see Table 3). 
 

Table 3: Literature on Benford’s Law in Accounting Data 
Author(s) Year Accounting Variable Region 

Carlslaw 1988 Net income and ordinary income (second digit) New Zealand 
Thomas 1989 Earnings and losses, quarterly earnings, earnings per share (second digit) USA 
Niskanen and Keloharju 2000 Earnings (second digit) Finland 
Van Caneghem 2002 Pre-tax income (second digit) UK 
Van Caneghem 2004 Pre-tax income (second digit) UK 
Kinnunen and Koskela 2003 Net income and net losses (second digit) Worldwide 
Das and Zhang 2003 Earnings per share (second digit) USA 
Skousen and al. 2004 Earnings (first, second, third and fourth digit) Japan 
Johnson 2009 Net income and earnings per share (first digit) USA 
Jordan, Clark and Hames 2009 Sales Revenue (second digit) USA 
Jordan and Clark 2011 Positive income (second digit) USA 
Geyer 2012 Sales (second digit) USA 
Hsien Hsieh and Lin 2013 Quartely earnings (second digit) USA 

 
Table 3 shows that previous studies concerns always earnings or sales. At the present time, to the best of 

our knowledge no previous study examine debt data from balance sheet to find rounding behavior. Stolowy and 
Breton (2003) elaborate a general framework for classifying accounts manipulations. Their framework is based on 
the desire to influence the market participants’ perception of the risk associated to the firm. The risk is materialized 
through the earnings per share and the debt/equity ratio. Regarding the first ratio, earnings has been extensively 
examined in digital analysis. Most empirical studies focus on earnings variables. Only the studies by Jordan, Clark, 
and Hames (2009) and Geyer (2012) analyze another item: sales. Regarding the second ratio, debt was not submitted 
yet to digital analysis. The aim of this paper is to search rounding behavior in the total long term debt numbers in a 
sample of US public firms. 
 
4. METHODOLOGY 
 

Table 3 shows that prior empirical studies have used a number of different earnings variables such as 
ordinary income or earnings before extraordinary items and discontinued operations (Carlslaw, 1988; Thomas, 
1989), pre-tax income (Van Caneghem, 2002), net income (Carlslaw, 1988; Niskanen & Keloharju, 2000; Kinnunen 
& Koskela, 2003), earnings per share (Thomas, 1989; Das & Zahang, 2003), etc. In other words, there is no 
unanimity in the choice of the earnings level for digital analysis. 
 

Concerning the debt, we have no previous study so the study is explanatory. Because of the difficulties in 
determining the most plausible target of Cosmetic Debt Management, we consider TLTD as a first choice. We use 
total assets as a control variable. There is no reason that management would round the total assets numbers to 
achieve cognitive reference points. For earnings variables, prior studies find upward rounding. Of course for TLTD, 
we expect a downward rounding behavior. 
 

To notice a rounding behavior, we are searching one or more cognitive points. In other words, there will be 
an abnormally higher than expected occurrence of one (or more) digits in the second position of TLTD numbers. Of 
course this phenomenon isn’t observed for the control variable total assets. 
 

To test whether the deviation of observed frequency for any digit from its expected frequency is 
statistically significant, we use the standard normal z-statistic. To test the statistical significance of the whole 
distribution of observed first or second digits against its expectation under randomness, we use the Chi-square test. 
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Data used in this study were obtained from the Standard & Poor’s Research Insight database. The empirical 
analysis includes annual net incomes of both active and inactive firms listed on New York Stock Exchange (NYSE), 
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations 
(NASDAQ) for 2010 and 2011. It is useful to have two samples to note if a significant excess or lack of a second 
digit is present in the two samples. Otherwise it is maybe a statistical aberration which is often present in one sample 
and missing in the other one. 
 
5. EMPIRICAL RESULTS 
 

Table 4 details the frequencies of second digits of the control variable total assets in 2010 and 2011 of our 
sample of US public companies (it is the same sample as for the data reported in Table 2). As in Table 2, the Chi-
square test accepts the hypothesis that all digits are distributed according to the theoretical distribution of Benford’s 
law at the 5% level of significance in 2010 and 2011. The z-statistics indicate that only one of the second digits in 
2011 is significant at the 0.05 level, and none in 2010. But once cannot consider this to be a rounding behavior 
because we do not observe significantly more zeros as second digits than what could be expected by mere chance 
according to Benford’s law. This finding is consistent with the prior studies of Jordan, Clarke, and Hames (2009) 
and Geyer (2012), who choose the same control variable. The two studies did not find rounding behavior in the total 
assets data set. 
 

Table 5 examines the frequencies of second digits of TLTD in 2010 and 2011. The results are very different 
in comparison with the control variable. The Chi-square test is significant at 1 percent level (p-value = 0.000 for the 
two years). For the second digit position of TLTD and using a 0.05 alpha level, the study reveals that the observed 
frequency of every digit, zero through nine, differs by a statistically significant amount from its expected frequency 
six times out of twenty (only one time out of twenty for the control variable) for the two years. There are two 
important phenomena: 
  Table 5 shows that there are systematically more zeros and fives in the second place of TLTD numbers. 

The proportion of zeros (fives), expected to be 11.97 (9.67) percent of the sample, is actually higher by 
1.86 (1.17) percent of the sample in 2010 and 1.61 (1.64) percent of the sample in 2011. These large 
deviations are statistically significant at the one percent level.  For the other cases, Table 5 reveals a statistically significant (i.e., at the 5 percent level of significance) 
lower than expected incidence of sevens (in 2011) and eights (in 2010) as second digit for our two samples. 

 
How can we interpret these observations? There are two types of rounding behavior: upward or downward. 

Empirical studies of Table 3 consider only upward behavior. This behavior can be more or less aggressive. Thus 
several studies note more than expected zeros and less than expected nines as second digit of earnings numbers: it is 
the less aggressive rounding behavior. For example, an earnings of 99.9 millions of dollars is rounded to 100 
millions of dollars. However the results of Niskanen and Keloharju (2000) in their examination of cosmetic earnings 
management among Finnish firms show that Finnish companies do not limit their rounding of the second earnings 
digit merely from nines to zeros. The authors found that the observed frequencies of sixes and sevens as second digit 
are significantly smaller than their expected frequencies. In other words, the upwards rounding behavior is more 
aggressive. Jordan, Clark, and Hames (2009) found similar results for a sample of U.S. public companies: the same 
type of aggressive manipulative behavior appears to be occurring with respect to reported sales revenue. The study 
demonstrates that firms report zeros in the second sales digit far more often than expected and report sevens in the 
second sales position much less often than expected (the differences between the actual and expected proportions 
were significant at the 0.10 level).  
 

Table 5 shows that there are two cognitive reference points (more than expected zeros and fives as second 
digit): Nx10k et (2xN+1)x5x10j (N is an integer between 1 to 9; k is an integer from 1 and j is an integer from 0). A 
rounding behavior compatible with the findings of Table 5 is rounding down behavior taking the two reference 
points into account. Other studies must confirm this finding. But this kind of Cosmetic Debt Management reinforces 
the results of Table 5: an important excess of fives and zeros as second digit are significant at 1 percent level in 2010 
and 2011. For the eight other digits (1, 2, 3, 4, 6, 7, 8, and 9), the actual frequencies are smaller than their expected 
frequencies 15 times out of 16 in the two samples (only two lacks of second digit are significant at 5 percent level). 
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Table 4: Frequency of Second Digits for Total Assets 

Digit No. of times digit occurs 
in 2nd position 

Observed frequency 
(%) 

Expected 
Frequency (%) 

Z value P value 
 

0 
2010 589 11.589 

11.968 
-0.019 0.985 

 
2011 482 11.925 -0.085 0.933 

 
1 

2010 545 11.066 
11.389 

-0.714 0.476 
 

2011 469 11.603 0.429 0.668 
 

2 
2010 526 10.680 

10.882 
-0.455 0.649 

 
2011 442 10.935 0.109 0.914 

 
3 

2010 504 10.234 
10.433 

-0.458 0.647 
 

2011 398 9.847 -1.220 0.223 
 

4 
2010 506 10.274 

10.031 
0.568 0.570 

 
2011 404 9.995 -0.076 0.939 

 
5 

2010 473 9.604 
9.668 

-0.152 0.879 
 

2011 402 9.946 0.597 0.550 
 

6 
2010 451 9.157 

9.337 
-0.433 0.665 

 
2011 403 9.970 1.384 0.166 

 
7 

2010 479 9.726 
9.035 

1.691 0.091 
 

2011 382 9.451 0.922 0.357 
 

8 
2010 439 8.914 

8.757 
0.389 0.697 

 
2011 307 7.595 -2.613 0.009 

 
9 

2010 413 8.386 
8.500 

-0.287 0.774 
 

2011 353 8.733 0.532 0.595 
 

Total 
2010 4,925 Chi-square 4.120 Degrees of freedom 9 P-value 0.903 
2011 4,042 Chi-square 10.837 Degrees of freedom 9 P-value 0.287 

 
Table 5: Frequency of Second Digits for Total Long Term Debt 

Digit No. of times digit occurs 
in 2nd position 

Observed Frequency 
(%) 

Expected 
Frequency (%) 

Z value P value 
 

0 
2010 681 13.827 

11.968 
4.020 0.000 

 
2011 549 13.582 3.162 0.002 

 
1 

2010 518 10.518 
11.389 

-1.925 0.054 
 

2011 450 11.133 -0.512 0.609 
 

2 
2010 544 11.046 

10.882 
0.369 0.712 

 
2011 449 11.108 0.462 0.644 

 
3 

2010 495 10.051 
10.433 

-0.878 0.380 
 

2011 415 10.267 -0.345 0.730 
 

4 
2010 459 9.320 

10.031 
-1.661 0.097 

 
2011 377 9.327 -1.490 0.136 

 
5 

2010 534 10.843 
9.668 

2.789 0.005 
 

2011 457 11.306 3.525 0.000 
 

6 
2010 435 8.832 

9.337 
-1.217 0.224 

 
2011 354 8.758 -1.265 0.206 

 
7 

2010 439 8.914 
9.035 

-0.297 0.767 
 

2011 318 7.867 -2.590 0.010 
 

8 
2010 392 7.959 

8.757 
-1.980 0.048 

 
2011 333 8.238 -1.166 0.243 

 
9 

2010 428 8.690 
8.500 

0.479 0.632 
 

2011 340 8.412 -0.201 0.840 
 

Total 
2010 4,925 Chi-square 33.043 Degrees of freedom 9 P-value 0.000 
2011 4,042 Chi-square 31.377 Degrees of freedom 9 P-value 0.000 

 
6. CONCLUSION 
 

The objective of this paper was to examine the long term debt from a digital analysis point of view. An 
abnormality in the distribution of long term debt numbers appearing in financial statements of U.S. public firms has 
been demonstrated. In other words, the aggregate frequency distribution of the second digits of total long term debt 
does differ from that expected under Benford’s law (the Chi-square test is significant at 1 percent level), thus 
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providing evidence of some management of total long term debt taking place, within the assumed framework of 
analysis for this study. We also find a significant positive deviation for zeros and fives for the second digit of long 
term debt in 2010 and 2011. This is consistent with the notion that firms do downward rounding to reach two key 
cognitive reference points of Nx10k and (2xN+1)x5x10j (N is an integer between 1 to 9; k is an integer from 1; j is 
an integer from 0). 
 

These unusual patterns are not observed for the control variable total assets in 2010 and 2011: more zeros 
and more fives than expected by chance alone are not observed in the second digits of total assets and the Chi-square 
test is not significant at the one percent level. 
 

Our study is exploratory, and there are several limitations. First, in this study, we consider only TLTD. 
Future research should consider further elements of debt such as current debt for example. Second our study 
investigates US public companies only. Future research could test our results using other samples such as private 
companies or public companies from other countries. 
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