D. Ahn, J. Conrad, and R. F. Dittmar, Risk Adjustment and Trading Strategies, Review of Financial Studies, vol.16, issue.2, pp.459-485, 2003.
DOI : 10.1093/rfs/hhg001

Y. Amihud and C. M. Hurvich, Predictive Regressions: A Reduced-Bias Estimation Method, Journal of Financial and Quantitative Analysis, vol.41, issue.04, pp.813-841, 2004.
DOI : 10.1016/S0304-405X(98)00020-8

URL : http://www.stern.nyu.edu/fin/workpapers/papers2002/pdf/wpa02019.pdf

Y. Amihud, C. M. Hurvich, and Y. Wang, Multiple-Predictor Regressions: Hypothesis Testing, Review of Financial Studies, vol.22, issue.1, pp.413-434, 2009.
DOI : 10.1093/rfs/hhn056

Y. Amihud, C. M. Hurvich, and Y. Wang, Predictive regression with order-p autoregressive predictors, Journal of Empirical Finance, vol.17, issue.3, pp.513-525, 2010.
DOI : 10.1016/j.jempfin.2009.12.002

A. Ang and G. Bekaert, Stock return predictability: Is it there? Review of Financial Studies, pp.651-707, 2007.

D. Andriosopoulos, D. K. Chronopoulos, and F. I. Papadimitriou, Can the information content of share repurchases improve the accuracy of equity premium predictions?, Journal of Empirical Finance, vol.26, pp.96-111, 2014.
DOI : 10.1016/j.jempfin.2014.01.006

H. Bessembinder and K. Chan, Market Efficiency and the Returns to Technical Analysis, Financial Management, vol.27, issue.2, pp.5-17, 1998.
DOI : 10.2307/3666289

URL : http://home.ust.hk/~kachan/research/tech.pdf

L. Blume, D. Easley, and M. O-'hara, Market Statistics and Technical Analysis: The Role of Volume, The Journal of Finance, vol.47, issue.1, pp.153-181, 1994.
DOI : 10.2307/1910413

P. Bossaerts and P. Hillion, Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?, Review of Financial Studies, vol.12, issue.2, pp.405-428, 1999.
DOI : 10.1093/rfs/12.2.405

URL : https://authors.library.caltech.edu/1433/1/BOSrfs99.pdf

W. Brock, J. Lakonishok, and B. Lebaron, Simple Technical Trading Rules and the Stochastic Properties of Stock Returns, The Journal of Finance, vol.23, issue.2, pp.1731-1764, 1992.
DOI : 10.2469/faj.v23.n6.87

J. Y. Campbell and M. Yogo, Efficient tests of stock return predictability???, Journal of Financial Economics, vol.81, issue.1, pp.27-60, 2006.
DOI : 10.1016/j.jfineco.2005.05.008

C. L. Cavanagh, G. Elliott, and J. H. Stock, Inference in Models with Nearly Integrated Regressors, Econometric Theory, vol.10, issue.05, pp.1131-1147, 1995.
DOI : 10.1016/0304-3932(91)90034-L

J. H. Cochrane, The Dog That Did Not Bark: A Defense of Return Predictability, Review of Financial Studies, vol.21, issue.4, pp.1533-1575, 2008.
DOI : 10.1093/rfs/hhm046

J. Conrad and G. Kaul, An Anatomy of Trading Strategies, Review of Financial Studies, vol.11, issue.3, pp.489-519, 1998.
DOI : 10.1093/rfs/11.3.489

F. X. Diebold and R. S. Mariano, Comparing predictive accuracy, Journal of Business and Economic Statistics, vol.13, pp.253-263, 1995.
DOI : 10.3386/t0169

URL : http://www.ssc.upenn.edu/~fdiebold/papers/paper68/pa.dm.pdf

R. Genay and T. Stengos, Moving average rules, volume and the predictability of security returns with feedforward networks, Journal of Forecasting, vol.17, issue.5-6, pp.401-414, 1998.
DOI : 10.1002/(SICI)1099-131X(1998090)17:5/6<401::AID-FOR704>3.0.CO;2-C

P. Giot and M. Petitjean, On the statistical and economic performance of stock return predictive regression models: an international perspective, Quantitative Finance, vol.21, issue.2, pp.175-193, 2011.
DOI : 10.2307/2331068

A. Goyal and I. Welch, Predicting the Equity Premium with Dividend Ratios, Management Science, vol.49, issue.5, pp.639-654, 2003.
DOI : 10.1287/mnsc.49.5.639.15149

C. M. Hafner and H. Herwarz, Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity, Statistica Neerlandica, vol.11, issue.3, pp.294-323, 2009.
DOI : 10.1007/978-3-642-61695-2

Y. Han, K. Yang, and G. Zhou, A New Anomaly: The Cross-Sectional Profitability of Technical Analysis, Journal of Financial and Quantitative Analysis, vol.44, issue.05, pp.1433-1461, 2013.
DOI : 10.1016/j.jfineco.2008.07.002

P. R. Hansen and A. Lunde, A forecast comparison of volatility models: does anything beat a GARCH(1,1)?, Journal of Applied Econometrics, vol.68, issue.7, pp.873-889, 2005.
DOI : 10.1007/978-1-4899-4473-3

P. R. Hansen, A. Lunde, and J. M. Nason, Model confidence sets for forecasting models, Econometrica, vol.79, pp.453-497, 2011.

E. Hjalmarsson, Predicting Global Stock Returns, Journal of Financial and Quantitative Analysis, vol.1, issue.01, pp.49-80, 2010.
DOI : 10.1016/0304-405X(89)90095-0

D. Huang, F. Jaing, J. Tu, and X. Zhou, Investor Sentiment Aligned: A Powerful Predictor of Stock Returns, Review of Financial Studies, vol.28, issue.3, pp.forth- coming, 2014.
DOI : 10.1093/rfs/hhu080

N. Jegadeesh and S. Titman, Profitability of Momentum Strategies: An Evaluation of Alternative Explanations, The Journal of Finance, vol.185, issue.2, pp.699-720, 2001.
DOI : 10.1126/science.185.4157.1124

S. J. Jordan, A. J. Vivian, and M. E. Wohar, Forecasting returns: New European evidence, Journal of Empirical Finance, vol.26, pp.76-95, 2014.
DOI : 10.1016/j.jempfin.2014.02.001

S. J. Jordan, A. J. Vivian, and M. E. Wohar, Forecasting Asian market returns: Bagging or combining? Working Paper, 2014.
DOI : 10.1016/j.ijforecast.2016.07.003

N. M. Kellard, J. C. Nankervis, and F. I. Papadimitriou, Predicting the equity premium with dividend ratios: Reconciling the evidence, Journal of Empirical Finance, vol.17, issue.4, pp.539-551, 2010.
DOI : 10.1016/j.jempfin.2010.04.002

J. H. Kim, Predictive regression: An improved augmented regression method, Journal of Empirical Finance, vol.26, pp.13-25, 2014.
DOI : 10.1016/j.jempfin.2014.01.002

J. H. Kim, Testing for parameter restrictions in a stationary VAR model: A bootstrap alternative, Economic Modelling, vol.41, pp.267-273, 2014.
DOI : 10.1016/j.econmod.2014.05.022

V. J. Kim and . Etp, VAR modelling: estimation, testing , and prediction. R package version 0.61

J. H. Kim and . Shamsuddin, A Bootstrap Inference for Predictive Regression: Can Dividend Yield Predict Stock Return? Available at SSRN: http://ssrn, 2014.
DOI : 10.2139/ssrn.2532122

L. Kilian, Exchange rates and monetary fundamentals: what do we learn from long-horizon regressions?, Journal of Applied Econometrics, vol.83, issue.5, pp.491-510, 1999.
DOI : 10.1080/01621459.1988.10478672

URL : http://deepblue.lib.umich.edu/bitstream/handle/2027.42/34956/527_ftp.pdf?sequence=1

A. Kostakis, T. Magdalinos, and M. P. Stamatogiannis, Robust Econometric Inference for Stock Return Predictability, Review of Financial Studies, vol.28, issue.5, pp.1506-1553, 2015.
DOI : 10.1093/rfs/hhu139

M. Lettau and S. Van-nieuwerburgh, Reconciling the Return Predictability Evidence, Review of Financial Studies, vol.21, issue.4, pp.1607-1652, 2008.
DOI : 10.1093/rfs/hhm074

URL : http://faculty.haas.berkeley.edu/lettau/papers/LettauVanNieuwerburghRFS.pdf

J. Lewellen, Predicting returns with financial ratios, Journal of Financial Economics, vol.74, issue.2, pp.209-235, 2004.
DOI : 10.1016/j.jfineco.2002.11.002

A. W. Lo, H. Mamaysky, and J. Wang, Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation, The Journal of Finance, vol.40, issue.4, pp.1705-1765, 2000.
DOI : 10.1111/j.1540-6261.1985.tb05000.x

H. Lutkepohl, New Introduction to Multiple Time Series Analysis, 2005.
DOI : 10.1007/978-3-540-27752-1

J. G. Mackinnon, Bootstrap inference in econometrics, Canadian Journal of Economics/Revue Canadienne d`Economique, vol.35, issue.4, pp.615-645, 2002.
DOI : 10.1111/0008-4085.00147

E. Mammen, Bootstrap and wild bootstrap for high dimensional linear models. The Annals of Statistics, pp.255-285, 1993.
DOI : 10.1214/aos/1176349025

URL : http://doi.org/10.1214/aos/1176349025

N. C. Mark, Exchange rates and fundamentals: Evidence on longhorizon predictability, American Economic Review, vol.85, pp.201-218, 1995.

D. G. Mcmillan, Non-linear Predictability of UK Stock Market Returns*, Oxford Bulletin of Economics and Statistics, vol.7, issue.5, pp.557-573, 2003.
DOI : 10.1007/978-1-4684-7888-4

C. J. Neely, D. E. Rapach, J. Tu, and G. Zhou, Forecasting the Equity Risk Premium: The Role of Technical Indicators, Management Science, vol.60, issue.7, pp.1772-1791, 2014.
DOI : 10.1287/mnsc.2013.1838

M. H. Pesaran and A. Timmermann, A Recursive Modelling Approach to Predicting UK Stock Returns, The Economic Journal, vol.110, issue.460, pp.159-191, 2000.
DOI : 10.1111/1468-0297.00495

URL : http://www.cass.city.ac.uk/faculty/g.urga/files/Teaching_2003-4/AdvFinModFor.PesTim2000.pdf

D. Rapach, J. Strauss, and G. Zhou, International Stock Return Predictability: What Is the Role of the United States?, The Journal of Finance, vol.37, issue.4, pp.1633-1662, 2013.
DOI : 10.1214/08-AOS625

D. Rapach and M. Wohar, Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns, Journal of Financial Econometrics, vol.4, issue.2, pp.238-274, 2006.
DOI : 10.1093/jjfinec/nbj008

R. Team, R: A language and environment for statistical computing . R Foundation for Statistical Computing, 2014.

A. Schrimpf, International stock return predictability under model uncertainty, Journal of International Money and Finance, vol.29, issue.7, pp.1256-1282, 2010.
DOI : 10.1016/j.jimonfin.2010.03.005

URL : http://www.dgf2008.de/content/paper/ash_ret_pred.pdf

P. Shaman and R. A. Stine, The Bias of Autoregressive Coefficient Estimators, Journal of the American Statistical Association, vol.36, issue.403, pp.842-848, 1988.
DOI : 10.1007/BF02481980

R. F. Stambaugh, Predictive regressions, Journal of Financial Economics, vol.54, issue.3, pp.375-421, 1999.
DOI : 10.1016/S0304-405X(99)00041-0

URL : http://www.msu.edu/~herrer20/documents/ec823/stambaugh.pdf

R. Sullivan, A. Timmermann, and H. White, Data-Snooping, Technical Trading Rule Performance, and the Bootstrap, The Journal of Finance, vol.64, issue.1997, pp.1647-1691, 1999.
DOI : 10.2307/2171956

URL : http://1cj3301.ucsd.edu/hwcv-073.pdf

I. Welch and A. Goyal, A Comprehensive Look at The Empirical Performance of Equity Premium Prediction, Review of Financial Studies, vol.21, issue.4, pp.1455-1508, 2007.
DOI : 10.1093/rfs/hhm014

M. E. Wohar, D. E. Rapach, and J. Rangvid, Macro variables and international stock return predictability, International Journal of Forecasting, vol.21, pp.137-166, 2005.

A. Zellner, An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias, Journal of the American Statistical Association, vol.57, issue.298, pp.500-509, 1962.
DOI : 10.2307/1911287

. Singapore, S. Sin-), and . Korea, Turkey (TUR). The MCS p-value are given. * , * * and * * * mean that the forecasts are not in, Thailand (THA)