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Abstract

The article develops a long-short portfolio construction technique that captures the fundamen-

tals of backwardation and contango present in commodity futures markets and simultaneously

deviates from the equal-weighting scheme traditionally employed in the literature. The sophisti-

cated weighting schemes based on risk minimization and risk timing are found to dominate the

traditional naive allocation and the schemes based on utility maximization. The conclusion applies

to both momentum and term structure portfolios and persists after accounting for transaction costs,

lack of liquidity, various model specifications, and different sub-periods.
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1. Introduction

There are theoretical and empirical reasons to believe that commodity futures investments com-

mand positive risk premia. The theoretical considerations relate either to the theory of storage of

Kaldor (1939) where the risk premium depends on inventory levels, and thus on the slope of the

futures curve, or to the hedging pressure hypothesis of Cootner (1960) where the risk premium

is a function of hedgers’ net positions. These theories have been empirically validated in numer-

ous empirical studies1 that advocate long positions in backwardated futures and short positions in

contangoed futures.2 While less theoretically grounded, other signals have also been shown to suc-

cessfully predict commodity futures price changes, where these signals relate to past performance,3

value, volatility, open interest, or skewness (Erb and Harvey, 2006; Miffre and Rallis, 2007; Hong

and Yogo, 2012; Asness et al., 2013; Szymanowska et al., 2014; Fernandez-Perez et al., 2018; Miffre,

2016, for a review.)

In the pre-cited empirical studies, the scheme employed to weight commodities within a portfolio

is equal weight. The rationale for this naive choice comes from the fact that unlike in equity markets,

there is no natural value-weighting scheme that can be easily applied to commodity portfolios; the

closest equivalent (i.e., production and consumption weighting) is difficult to implement given the

challenges of collecting reliable inventory data (Gorton et al., 2013; Symeonidis et al., 2012).4

Our contribution is to relax the assumption of naive equal weights and to apply sophisticated

weighting schemes to the design of long-short commodity portfolios. These schemes emanate from

the equity literature and are based on an optimization procedure (Markowitz, 1952; DeMiguel

1Support for the theory of storage is provided in Fama and French (1987), Erb and Harvey (2006), Gorton and
Rouwenhorst (2006), Symeonidis et al. (2012), Gorton et al. (2013), and Szymanowska et al. (2014). Evidence in
favor of the hedging pressure hypothesis can be found in Bessembinder (1992), De Roon et al. (2000), and Basu and
Miffre (2013).

2Backwardation predicts a rise in commodity futures prices driven by scarce inventories, a downward-sloping term
structure of futures prices, or net short hedging. Conversely, contango predicts a drop in commodity futures prices
driven by abundant inventories, an upward-sloping term structure, or net long hedging.

3Past performance or momentum has been shown to capture the phases of backwardation and contango as
winners (losers) present backwardated (contangoed) characteristics such as positive (negative) roll-yields, net short
(long) hedging and low (high) standardized inventories (Miffre and Rallis, 2007; Gorton et al., 2013).

4The required data on inventories is to be collected in reference to the delivery place of the underlying asset
of the futures contracts and is not always publicly available. Furthermore, inventories are often revised after being
published, making it difficult to analyze the profitability of the signals.
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et al., 2009; Kolm et al., 2014) or risk timing (Fletcher, 2011; Kirby and Ostdiek, 2012). More

specifically, we consider i) five optimization schemes based on variance minimization or various

utility maximization and ii) five risk-timing schemes (three of them follow Kirby and Ostdiek (2012)5

and define portfolio weights based on volatility timing (VT), beta timing (BT), and reward-to-risk

timing (RRT); the other two are novel to the literature on portfolio construction and are based on

Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR)).

The idea is to apply the aforementioned weighting schemes to the construction of commodity-

based long-short momentum and term structure portfolios. By doing this, the proposed optimized

and risk-timing strategies not only capture the fundamentals of backwardation and contango that

are key to the pricing of commodity futures, they also assign sophisticated weights to the con-

stituents of these portfolios. We can then compare the performance of the proposed sophisticated

momentum and term structure strategies to that of their naive equal-weight counterparts and

thereby test whether sophistication in the weighting schemes as based on an optimization proce-

dure or risk timing enhances performance.

Our findings suggest that the naive-weighting scheme traditionally employed in the construc-

tion of long-short commodity portfolios is easily challenged by the use of sophisticated weighting

schemes. Momentum and term structure strategies based on weights that minimize or time risk

yield more than their naive counterparts based on equal weights. At the other end of the spectrum,

strategies based on utility maximization lead to extreme long-short weights and poor risk-adjusted

performance. These conclusions persist after accounting for the risks of the strategies as captured

by the model of Bakshi et al. (2017). They are also robust to the consideration of transaction costs,

lack of liquidity, and different sub-periods and to the use of different parameters in the weighting

algorithms.

The article contributes to the literature on portfolio construction by proposing a novel approach

that designs long-short portfolios based on optimized and risk-timing weights. Designing such

a long-short framework is crucial as volatility timing weights are by construction positive and

5The timing strategies of Kirby and Ostdiek (2012) are close in nature to risk parity strategies, where portfolio
weights depend on the contribution of each asset to the risk of the entire portfolio.

3



optimized weights of either sign tend to be extreme in the presence of estimation errors, leading to

high turnover, poor out-of-sample performance, and trivial investment practicality (Jagannathan

and Ma, 2003; Michaud, 2008; Kirby and Ostdiek, 2012; Low et al., 2016). The article also speaks

to the literature on portfolio performance and, more specifically, to that on the relative merits of

various weighting schemes (DeMiguel et al., 2009; Tu and Zhou, 2011; Kirby and Ostdiek, 2012;

Kolm et al., 2014). By showing that risk-timing portfolios can outperform equal-weight portfolios

in the context of long-short asset allocation strategies, our article extends to a long-short setting

the conclusions that Kirby and Ostdiek (2012) drew in a long-only setting.

The remainder of the paper is structured as follows. Sections 2 and 3 present the research

method and the dataset, respectively. Section 4 discusses the empirical results. Section 5 provides

robustness checks and finally, section 6 concludes.

2. Research method

This section centers on portfolio construction with a focus on how to calculate naive and sophisti-

cated weights of either sign.

2.1. Allowing for weights of either sign

Since commodity futures markets switch from backwardation to contango depending on supply

and demand shocks, commodity futures strategies should freely allow for long, as well as short,

weights. The simplest way to accommodate this specificity is by removing short-selling constraints

from the optimization function, thereby allowing for weights of either sign. Unfortunately, this

leads to extreme weights in the presence of estimation errors, poor out-of-sample performance, and

trivial investment practicality (Jagannathan and Ma, 2003; Michaud, 2008; Kirby and Ostdiek,

2012). Allowing for negative weights within the risk-timing strategies of Kirby and Ostdiek (2012)

is not trivial either: the approach defines portfolio weights based on various risk measures, which

by definition are strictly positive.

To accommodate the need for negative weights, we adapt the portfolio construction method-

ology used for long-only portfolios as follows. First, we decipher whether a given commodity is

backwardated or contangoed and consequently, whether it shall be bought or sold. Second, over
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the ranking period used to define the optimized weights, the returns of the contangoed commodities

are multiplied by -1 and the returns on the backwardated commodities are left unchanged. Third,

the matrix of returns thereby obtained is used to define X = (x1, · · · , xN )′, a N × 1 vector of

positive weights ensuring that the conditions of full collateralization and full investment are im-

posed; namely, ΣN
i=1xi = 1 . Section 2.2.2 (Section 2.2.3) details how these weights are estimated

for the optimized (risk-timing) portfolios. Fourth, to reflect upon the fact that contangoed futures

shall be sold, the positive weights obtained for contangoed commodities are multiplied by -1 and

the long-short portfolio thereby constructed is held over the next month. The approach is rolled

forward a month and at that time a new portfolio is constructed.

Two signals are used to tell apart whether a given commodity futures is backwardated or

contangoed in the first step above. The first signal for the momentum portfolio is based on past

performance, measured as excess return over the 12 months preceding portfolio formation, where

a positive (negative) excess return triggers a long (short) recommendation. The second signal for

the term structure portfolio is based on roll-yield measured at the time of portfolio formation as

the differential in the log of the settlement prices of the nearby and second nearby contracts; a

positive (negative) roll-yield prompts a long (short) position. The motivation comes from the fact

that commodities with good past performance or positive roll yields are in backwardation and thus

expected to appreciate, while commodities with poor past performance or negative roll yields are

in contango and thus expected to depreciate.

Our naive and sophisticated momentum portfolios do not merely invest in extreme performers;

rather, they consider the N assets present at the time of portfolio formation. As such, they resemble

the time-series trend-following portfolios of Szakmary et al. (2010) and Moskowitz et al. (2012) that

are based on equal weights. Equivalently, our naive and sophisticated term structure portfolios could

be regarded as time-series term structure portfolios. Such a time-series approach ensures better

diversification and allows for the consideration of a wider range of portfolios. Indeed, depending

on market conditions, the portfolios formed may be long-only (shall all futures be backwardated),

short-only (shall all futures be contangoed) or long-short (shall some futures be backwardated,

while others are contangoed). By contrast, the cross-sectional approach typically considered in the
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literature (e.g., Erb and Harvey, 2006; Miffre and Rallis, 2007) consistently forces the portfolios to

be long-short.

2.2. Weighting schemes

This section details how the positive weights implied by the long-only naive, optimized and risk-

timing strategies are obtained. As noted in Section 2.1, these positive weights are subsequently

transformed into negative weights for contangoed assets to reflect upon the fact that contangoed

assets shall be sold. To enable fair comparison, the optimized and risk-timing weights are calculated

using rolling-windows of one year of daily data.

2.2.1 Equally-weighted (EW) approach

Portfolio weights are naively assumed to be the same across assets; i.e., Xt = ( 1
N , . . . ,

1
N )′. The

weights do not depend on any parameter (aside from the number of assets) and thus the approach

is appealing as it does not suffer from estimation errors. The equally-weighted (EW) momentum

and term structure portfolios are standard in the commodity pricing literature and will serve as

benchmarks to appraise the potential benefits emanating from the use of sophisticated weights.

2.2.2 Optimized weights

Three of the five optimized solutions considered maximize, at time t, investor’s expected utility of

wealth at time t+1 with respect to portfolio weights: max
xi,t

Et[U(Wt+1)]. Without loss of generality,

we normalize investor’s initial wealth to 1, and therefore have

Wt+1 = Wt(1 + rp,t+1) = Wt(1 + ΣN
i=1xiri,t+1) = 1 + ΣN

i=1xiri,t+1, (1)

under the constraints of positive weights xi ≥ 0, i = 1, . . . , N , full investment and full collateral-

ization ΣN
i=1xi = 1. Portfolio weights are defined under the following utility functions:

• Power utility (PU):

U(W ) =
W 1−γ − 1

1− γ
, γ 6= 1 (2)
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• Negative exponential utility (NE):

U(W ) =
−e−ηW

η
, η ≥ 0 (3)

• Power utility with disappointment aversion (DA) and 0 as the reference point relative to

which gains and losses are measured (Gul, 1991):

U(W ) =


W 1−γ−1

1−γ if W > 0,

W 1−γ−1
1−γ + ( 1

A − 1)[W
1−γ−1
1−γ ] if W 6 0,

γ is the coefficient of relative risk aversion (γ = 3), η is the coefficient of absolute risk aversion

(η = 3), A ≤ 1 is the coefficient of disappointment aversion (A = 0.6), where A captures the fact

that investors are more sensitive to losses than to gains of equal size.

Portfolio weights are also calculated for a mean-variance (MV) portfolio:

max
Xt

(X ′tµ−
γ

2
X ′tΣXt), (4)

where Xt is the vector of weights and µ and Σ are the estimated excess returns vector and covariance

matrix, respectively. Lastly, we consider the minimum variance (MIN) portfolio, assuming therefore

that expected returns can be ignored.

2.2.3 Risk-timing weights

The risk-timing schemes employed do not use any formal optimization and as such, they are often

considered as feasible alternatives to the optimized solutions (the latter are known to lead to

extreme weights and poorly diversified allocation). In total, we consider five risk-timing schemes;

three define asset allocation based on volatility timing, beta timing, and reward-to-risk timing

(Kirby and Ostdiek, 2012); the other two are based on tail risk as modelled via Value-at-Risk and

conditional Value-at-Risk; to the best of our knowledge, they are novel to the literature on portfolio

construction.
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volatility timing (VT) weights

The first class of risk-timing weights uses exclusively the assets’ time-varying volatilities. This is

done by setting all off-diagonal elements of the covariance matrix to zero.6 Formally, portfolio

weights are given by

xi,t =
1/σ2i,t∑N
i=1 1/σ2i,t

, i = 1, 2, · · · , N (5)

By introducing a tuning parameter, η, in the above equation, the VT strategy is generalized to

allow for more flexibility in terms of how aggressive the portfolio weights respond to changes in

volatility

xi,t =
(1/σ2i,t)

η∑N
i=1(1/σ

2
i,t)

η
, i = 1, 2, · · · , N, η ≥ 0 (6)

As η −→ 0, the effect of volatilities on determining portfolio weights diminishes and the strategy

moves towards the EW strategy. As η −→ ∞, the strategy assigns larger weights to assets with

lower volatility.

Reward-to-risk timing (RRT) approach

Although expected returns are usually estimated with far less precision than volatilities (Merton,

1980), treating them as part of the portfolio construction process enhances the available informa-

tion set which can lead to better performance. The second class of risk-timing weights therefore

incorporates conditional expected returns in Equation 6 as follows

xi,t =
(µ+i,t/σ

2
i,t)

η∑N
i=1(µ

+
i,t/σ

2
i,t)

η
, i = 1, 2, · · · , N, η ≥ 0, (7)

6The assumption of zero return correlations reduces estimation error and turnover, resulting in potentially en-
hanced net performance.
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µ+i,t = max{0, µi,t}, where µi,t denotes average excess returns as estimated for asset i at time t. The

restriction µ+i,t ≥ 0 is needed for the RRT term structure portfolio to ensure that xi,t ≥ 0, ∀i, t;7

it is redundant for the RRT momentum portfolio for which µ+i,t ≥ 0 and thus xi,t ≥ 0 by default.

The base case RRT strategy assumes η = 1.

Beta timing (BT) approach

The third class of risk-timing weights addresses concerns pertaining to the high degree of estimation

errors in sample expected returns (Merton, 1980). This is done by estimating conditional expected

returns using the conditional CAPM as follows

Et(ri,t+1) = βi,tEt(rM,t+1), i = 1, 2, · · · , N, (8)

where ri,t+1 and rM,t+1 denote the time t + 1 excess return of asset i and that of the market,

respectively. To ensure xi,t ≥ 0, i = 1, 2, · · · , N , we assign strictly positive weights to the assets

whose betas have the same sign as the conditional expected return of the market. Replacing

expectations with sample moments in Equation 8 and µ+i,t by β+i,t in Equation 7, the BT weights

are defined as

xi,t =
(β+i,t/σ

2
i,t)

η∑N
i=1(β

+
i,t/σ

2
i,t)

η
, i = 1, 2, · · · , N, η ≥ 0, (9)

where β+i,t = |βi,t| if βi,t has the same sign as µM,t and 0 otherwise (to ensure xi,t ≥ 0 for i =

1, , N). βi,t and µM,t in turn are estimated in relation to the daily excess returns of the S&P-GSCI.

As before for VT and RRT, the base case BT strategy assumes η = 1.

Value-at-Risk timing (VaRT) approach

Volatility is the sole risk influencing the VT weights. However, it suffers from the shortcomings

of focusing on upside (as well as downside) volatility and of ignoring tail risk. To address these

7To ensure xi,t ≥ 0 for i = 1, 2, · · · , N in Equation 7 , the RRT term structure strategy assigns zero weights
to the contangoed commodities with negative roll-yields and negative past performance (in that case, µ+

i,t = 0 and
xi,t = 0) and strictly positive weights to the contangoed commodities with negative roll-yields and positive past
performance (in that case, µ+

i,t = µi,t and xi,t > 0). As contangoed assets with negative roll-yields shall be sold,
these positive weights are subsequently multiplied by -1 (as detailed in Section 2.1).
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problems, we estimate Value-at-Risk timing weights which employ VaR in lieu of volatility in

Equation 6

xi,t =
(1/ν2i,t)

η∑N
i=1(1/ν

2
i,t)

η
, i = 1, 2, · · · , N, η ≥ 0, (10)

where ν denotes the α level empirical VaR. We set α = 0.95 which is among the most-frequently

used values for VaR in practice (Low et al., 2013). Again, the base case Value-at-Risk timing

(VaRT) strategy assumes η = 1.

Conditional Value-at-Risk timing (CVaRT) approach

VaR suffers from two known shortcomings; that of ignoring the magnitude of losses greater than VaR

and that of not being a coherent risk measure (Artzner et al., 1999), resulting in the underestimation

of extreme losses. Conditional Value-at-Risk (CVaR), also known as expected shortfall, circumvents

these issues by reporting the expected value of losses below the corresponding VaR threshold. CVaR

is subadditive and convex, thus it is a coherent risk measure. It is also easier to estimate (Rockafellar

and Uryasev, 2002). The conditional Value-at-Risk timing (CVaRT) weights are calculated by

substituting VaR with CVaR in Equation 10

xi,t =
(1/c2i,t)

η∑N
i=1(1/c

2
i,t)

η
, i = 1, 2, · · · , N, η ≥ 0, (11)

where c denotes the α level empirical CVaR and α = 0.95. The base case CVaRT strategy assumes

η = 1.

3. Data and sampling

The dataset, from Datastream International, consists of daily prices for 40 commodity futures

from January 1979 to April 2016. The constituents of the dataset comprise 10 metal commodity

futures (aluminum, copper, gold, lead, nickel, palladium, platinum, silver, tin, zinc), 4 livestock

(feeder cattle, frozen pork bellies, lean hogs, live cattle), 9 energy contracts (Brent crude oil, coal,

electricity, gas oil, gasoline, heating oil, light sweet crude oil, natural gas, unleaded gasoline), 14

agricultural commodities (cocoa, coffee, corn, cotton, frozen concentrated orange juice, oats, rough
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rice, soybeans, soybean meal, soybean oil, sugar number 11, sugar number 14, wheat, white wheat),

alongside with the futures on lumber, milk and western plywood. Our study assumes that investors

hold fully-collateralized positions in these contracts. Excess returns are measured as the percent

changes in the daily settlement prices using either nearest or second nearest contracts; the second

nearest contracts are used in months when the nearest contracts mature. This approach addresses

potential liquidity issues.

We will compare the performance of the naive and sophisticated momentum and term structure

portfolios to benchmarks that are now standard in the commodity pricing literature (Erb and

Harvey, 2006; Miffre and Rallis, 2007; Szymanowska et al., 2014; Bakshi et al., 2017). These include:

i) AVG, a long-only equally-weighted and monthly-rebalanced portfolio of all commodity futures,

ii) the S&P-GSCI, iii) CARRY, an equally-weighted monthly-rebalanced portfolio that is long the

5 commodity futures with highest roll-yields and short the 5 commodities with lowest roll-yields,

iv) MOM, an equally-weighted monthly-rebalanced portfolio that is long the 5 commodity futures

with highest mean excess returns over the past 6 months and short the 5 commodity futures with

lowest mean excess returns over the past 6 months and v) LIQ, a long-short portfolio that is long

the 5 commodity futures with lowest “Amivest” measure of liquidity and short the 5 commodity

futures with highest “Amivest” measure of liquidity (Amihud et al., 1997; Marshall et al., 2012).8

Appendix A presents summary statistics for these portfolios. Aligned with the literature (Miffre,

2016), the long-short portfolios generate better performance than the long-only benchmarks.

4. Main empirical results

4.1. Momentum strategies

Can the optimized and risk-timing strategies proposed in Section 2 be used to enhance the per-

formance of the standard (EW) momentum strategy? Table 1, Panel A answers the question by

looking at various performance measures. With Sharpe and Sortino ratios at 0.74 and 1.08 respec-

tively, the naive EW momentum strategy ranks 5th out of the 11 momentum strategies considered.

8Amivest measure is calculated as the average over the 2 months preceding portfolio formation of the ratio of
daily $volume (or volume multiplied by settlement price) to daily absolute return.
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MIN and VT are shown to present the highest Sharpe ratios (0.97 and 0.95, respectively), the

highest Sortino ratios (1.45 and 1.50, respectively) and the highest Omega ratios (2.12 and 2.06,

respectively). VaRT and CVaRT rank closely thereafter with e.g., Sharpe ratios at 0.87 and Sortino

ratios exceeding 1.3. At the other end of the spectrum, the momentum strategies that maximize

expected utility rank worst with e.g., Sharpe ratios around 0.3.

The outperformance of MIN, VT, VaRT and, CVaRT relative to EW does not come from a bet-

ter gross performance (the mean excess returns obtained are often statistically the same). Rather

the higher Sharpe, Sortino and Omega ratios of MIN, VT, VaRT, and CVaRT are driven by their

more appealing risk profiles; namely, their lower volatility, lower downside volatility, lower maxi-

mum drawdown, higher VaR or higher CVaR. The strategies based on expected utility maximization

suffer from risk characteristics that are unattractive such as annualized total and downside volatil-

ities exceeding 25%, negative skewness levels or maximum drawdowns of more than 75%. These

high levels of risk are driven by the poorly diversified asset allocation that optimizers are known

to generate (Jagannathan and Ma, 2003; Michaud, 2008; Kirby and Ostdiek, 2012).9

[Table 1 about here.]

Table 1, Panel B reports parameter estimates from regressions of the excess returns of the

sophisticated momentum strategies onto the excess returns of the naive EW momentum strategy.

Confirming the results of Panel A, MIN, VT, VaRT, and CVaRT stand out as better strategies

than EW since they generate abnormal excess returns that are significant at the 1% level. The

risk-adjusted outperformance of MIN, VT, VaRT, and CVaRT ranges from 1.2% to 2.4% a year.

Interestingly, the sensitivity of the MIN, VT, VaRT, and CVaRT excess returns to the EW excess

returns is less than 1, confirming that indeed these strategies are less risky than the EW benchmark.

The strategies based on utility maximization again stand poorly relative to the competing portfolios,

destroying investors wealth relative to the EW benchmark by an average alpha at 5.34% a year.

Table 1, Panel C reports similar parameter estimates as Table 1, Panel B but this time we

treat as independent variables the excess returns of the three-factor model of Bakshi et al. (2017);

9Detailed asset allocations for all strategies are available upon request from the authors.
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namely, AVG, CARRY, and MOM. The idea is to test whether the proposed naive and sophisticated

momentum strategies merely capture the risk premia known to be present in commodity futures

markets or whether they are capable of generating positive and significant alphas.

MIN, VT, VaRT, and CVaRT stand out again; they present exposures to MOM that are lower

than those of the other portfolios, as well as positive and statistically significant alphas ranging

from 4.40% (MIN) to 5.30% (VT) a year. Likewise, EW and RRT generate positive alphas that

are statistically significant at the 1% level. Unlike AVG and CARRY, the MOM factor strongly

and uniformly explains the excess returns of all strategies. This is not surprising as the portfolios

studied in Table 1 sort commodities into backwardated and contangoed portfolios based on past

performance. The adjusted R2, however, averages 29%, suggesting that a large proportion of excess

returns remains unexplained.

Interestingly, the time-series EW momentum portfolio (that considers all assets present in the

cross section) generates a Sharpe ratio at 0.74 (Table 1, Panel A) which substantially exceeds that

of the cross-sectional EW momentum portfolio (that merely shortlists the 10 assets with the most

extreme characteristics; Sharpe ratio of 0.40, Appendix A). A comparison of the risk profiles of the

two portfolios highlights the benefits of diversification obtained from holding all N assets present

at the time of portfolio formation, as opposed to merely the 10 most extreme performers. Likewise,

the time-series EW momentum portfolio generates a positive alpha equal to 4.24% (t-statistic of

4.26) a year relative to the three-factor benchmark of Bakshi et al. (2017). These results highlight

the superiority of the time-series, over cross-sectional, approach to portfolio construction.

Figure 1 presents the evolution in the aggregated long and short weights for each of the 11

strategies considered. The plots indicate strong similarities in the long-short splits across weighting

schemes. For example, the correlations between any two pairs of aggregated long weights across

strategies range from 40% (between VT and BT) to 1 (between NE and DA) with an average of

69%. The darker (lighter) line on the right-hand side of each plot presents the future value of a

$1 investment into the momentum (AVG) portfolio. The plots provide a graphical endorsement

of the MIN, VT, VaRT, and CVaRT strategies in terms of both reducing volatility and enhancing

risk-adjusted returns. Interestingly, when commodity markets enter a correction (as portrayed by
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a drop in the value of the AVG investment), the MIN, VT, VaRT, and CVaRT portfolios seem to

post interesting returns, suggesting that these strategies can partially hedge commodity risk.

[Figure 1 about here.]

Figure 1 also shows that PU, NE, DA, MV, and BT are the strategies that are the most

sensitive to market movements; they often consist of either almost all long or almost all short

positions. These near 100% long or short weighting schemes imply that there shall be near perfect

synchronicity in the phases of backwardation and contango across commodity markets; this does

not occur in reality as at time t the supply and demand conditions for, e.g., corn are unlikely to

perfectly match those for, say, palladium. The observed extreme weights of the PU, NE, DA, MV,

and BT strategies, and their lesser ability to time the specificities of each market, could explain

why these strategies performed worse than the competing weighting schemes in Table 1.

All in all, we conclude that equal-weighting of the constituents of the momentum portfolio is

suboptimal; enhanced risk-adjusted performance of the momentum strategy can be obtained by

using weights based risk minimization (MIN) or risk timing (VT, VaRT, and CVaRT).

4.2. Term structure-based strategies

Are our results driven by the use of past performance as signal for allocation? To answer this

question, we use roll-yield, in place of excess return, as sorting criterion for the backwardated and

contangoed portfolios. Table 2, Panel A presents summary statistics of performance for both the

naive EW term structure portfolio and variants thereof based on optimized and risk-timing weights.

Following the same format as Table 1, Panels B and C attempt to explain the excess returns of

the sophisticated term structure strategies using either the excess returns of the naive EW term

structure strategy in Panel B or the three-factor benchmark of Bakshi et al. (2017) in Panel C.

[Table 2 about here.]

Three sophisticated term structure strategies, those based on MIN, RRT, and BT weights, stand

out as outperforming the standard EW term structure portfolio. This is evidenced by Sharpe,

Sortino and Omega ratios that are higher for these sophisticated strategies and lower for the naive
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portfolio and by positive and statistically significant alphas in both Panels B and C (the annualized

alphas range from 1.50% (MIN) to 8.75% (BT)). The outperformance of MIN, RRT, and BT relative

to EW is driven either by notably higher mean excess returns (RRT and BT) or by substantially

more appealing risk measures (MIN).

At the other end of the spectrum, the term structure portfolios based on utility maximization

(namely, PU, NE, DA, and MV) stand out again as being the least profitable; they present Sharpe

ratios that merely equal 0.32 on average (versus 0.58 for EW) and alphas that are statistically

insignificant in both panels B and C. As expected (Jagannathan and Ma, 2003; Michaud, 2008;

Kirby and Ostdiek, 2012; Low et al., 2016), a detailed non-reported analysis of these asset allocations

indicates extreme weights and poor diversification.

Figure 2 plots the evolution over time of the aggregated long and short allocations of the

various term structure portfolios, alongside the future value of a $1 investment in the AVG and

term structure portfolios. Like for momentum before, we note a tendency for the aggregated long

weights to move in tandem across weighting schemes; and likewise for the aggregated short weights.

The figure also confirms conclusions drawn previously. For example, panel (f) shows that MIN is

a strategy with a positive and smooth performance, while panels (h) and (i) highlight that the

superiority of the RRT and BT strategies in terms of performance comes at the price of relatively

high levels of risk.

[Figure 2 about here.]

A comparison of the risk and performance measures obtained in Tables 1 and 2 shows that the

profitability of a strategy depends more on the weighting scheme chosen than on the criterion used

to sort the cross section into backwardation and contango. Irrespective of the signal employed,

weighting schemes that either minimize or time risk are indeed found to beat the equal-weight

benchmarks. On the other hand, weighting schemes based on utility maximization lead to poorly

diversified portfolios with meagre risk-adjusted performance compared to EW.
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5. Robustness checks

The conclusion thus far is that the risk-minimization and risk-timing schemes when applied to

the popular EW momentum and term structure strategies generate enhanced risk-adjusted per-

formance. This section tests the robustness of this conclusion to considerations pertaining to

transaction costs, illiquidity, model parameters and sub-periods.

5.1. Turnover and transaction costs

As transaction costs can erode the profits of otherwise lucrative strategies (Do and Faff, 2012), we

measure the turnover and net performance of the various momentum and term structure strategies

relative to three sets of transaction costs. These include the costs of opening and closing positions

as contracts enter or exit the portfolios, the costs of rolling contracts forward as they come close

to maturity and; finally, the costs of rebalancing existing positions to their desired weights at the

end of each holding period.

Following DeMiguel et al. (2009), we measure the monthly turnover (TO) of each strategy as

the average of all trades

TO =
1

T − 1

T−1∑
t=1

N∑
i=1

(|xi,t+1 − xi,t+ |), (12)

xi,t+ and xi,t+1 are the weights assigned to the ith futures at the end of month t + 1 before and

after portfolio rebalancing, respectively; thus our definition of turnover takes into account the fact

that portfolio weights naturally evolve with the performance of the assets. T is the number of

observations in the holding period of the portfolios and N is the number of commodity futures

present in the cross section at each month end. The turnover ranges from 0 (when no trading

occurs) to 2 (when all existing positions are closed and N new positions are subsequently opened).

Net returns are then calculated as

rp,t+1 =

N∑
i=1

xi,tri,t+1 −
N∑
i=1

TC × |xi,t+1 − xi,t+ | (13)

Following Marshall et al. (2012), we assume a conservative level of transaction costs (TC) of

8.6 b.p. It is worth noting that there are no short selling restrictions in futures markets and thus,
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long and short positions cost the same.

Table 3 reports the results of our transaction costs analysis for the momentum strategies in

Panel A and for the term structure strategies in Panel B. It is clear that the use of a sophisticated

weighting scheme has little impact on turnover and transaction costs. The momentum and term

structure strategies that outperformed their equal-weight counterparts in Table 1 (MIN, VT, VaRT,

and CVaRT) and Table 2 (MIN, RRT, and BT) still offer superior net Sharpe ratios in Table 3.

In other words, the ranking of performance is unchanged and the conclusions drawn thus far are

robust to the consideration of transaction costs.

[Table 3 about here.]

5.2. Liquidity risk

As further robustness checks, we test whether the performance identified in Tables 1 and 2 is

merely driven by the lack of liquidity of the constituents traded in the long-short portfolios. To

do so, we conduct two tests. First, we remove from the cross section available at the time of

portfolio formation the 10% of contracts that have the lowest Amivest measure (namely, those

with the lowest $Volume per unit of absolute return as averaged over the past two months) and

implement the strategies on the remaining 90%. If lack of liquidity drives part of the performance,

the strategies that trade the most liquid assets shall exhibit a performance that is noticeably worse

than that reported in Tables 1 and 2. Second, we measure the alpha of the naive and sophisticated

strategies relative to the three-factor model of Bakshi et al. (2017), augmented with a risk premium

based on Amihud et al. (1997) liquidity measure.

The results are reported in Table 4. Using a smaller cross section of liquid assets has no

bearing on relative performance. Besides, the measures of abnormal performance are of a similar

magnitude as previously reported in Tables 1 and 2, Panels C and the exposures of the strategies

to the liquidity risk premium are often equal to zero at the 5% level. We conclude therefore that

the outperformance of the MIN, VT, VaRT, and CVaRT momentum strategies and that of the

MIN, RRT, and BT term structure strategies relative to their naive counterparts are not merely a

compensation for liquidity risk.
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[Table 4 about here.]

5.3. Choice of model parameters

Our base-case assumes an estimation period of 12 months for the portfolio weights, a 12-month

ranking period for momentum, a 1-month holding period, and a tuning parameter η equal to 1.

Table 5 allays concerns regarding the sensitivity of our results to these choices by considering

three weighting ranking periods (Rweight) set to 3, 6, or 18 months,10 two momentum ranking

periods(Rmom) set to 3 and 6, two holding periods (H) set to 2 and 4 months, and two tuning

parameters (η) set to 2 and 3. The conclusions are mostly unchanged. With only a few exceptions,

the sophisticated momentum and term structure strategies that outperform their equal-weight

counterparts are the same under these alternative settings as those in Tables 1 and 2. The exceptions

pertain, for example, to term structure portfolios with a holding period of 4 months and to VT

momentum strategies with tuning parameters η exceeding 1.

[Table 5 about here.]

5.4. Sub-sample analysis

We appraise the performance of the strategies over various sub-periods. These are delimited as fol-

lows: pre and post financialization (dated January 2006, Stoll and Whaley, 2011); periods of height-

ened versus reduced conditional volatility in commodity (or equity) markets (where the threshold

is defined as the long-term average S&P-GSCI (S&P500) volatility estimated from a GARCH(1,1)

model), as well as over five consecutive periods of roughly equal lengths. The conclusions presented

in Table 6, Panel A for the momentum strategies are remarkably consistent with those reported

in Table 1: irrespective of the sample considered, the Sharpe ratios of the MIN, VT, VaRT, and

CVaRT exceed those of EW. The inferences presented in Table 6, Panel B for the term structure

strategies are slightly less robust. As in Table 2, MIN and RRT nearly always generate higher

Sharpe ratios that EW but that conclusion applies less often to BT. Interestingly, the strategies

perform better in period of low volatility in commodity and equity markets, suggesting that the

timing strategies of Barroso and Santa-Clara (2015) could enhance performance further.

10The use of a longer estimation period shall mitigate legitimate concerns regarding estimation errors.
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[Table 6 about here.]

6. Conclusions

This article introduces a new long-short portfolio construction technique that simultaneously cap-

tures the fundamentals of backwardation and contango present in commodity futures markets and

allows for weighting schemes that depart from the traditional naive weights. These sophisticated

weighting schemes emanate from the optimization and risk-timing literatures as thus far applied to

the construction of long-only equity portfolios. By comparing the performance of the sophisticated

long-short momentum and term structure strategies to that of their naive equal-weight counter-

parts, this article tests whether sophistication in the weighting scheme has bearing on performance.

The empirical results show that the equal-weight scheme that is traditionally employed in

the construction of long-short portfolios is quite easy to beat. Momentum and term structure

portfolios that use weights that minimize or time risk yield more than the naive equal-weight

portfolios. At the other end of the spectrum, weighting schemes based on utility maximization lead

to poorly diversified portfolios with meagre risk-adjusted performance. These conclusions persist

after accounting for the risks of the strategies as captured by the now traditional commodity pricing

model of Bakshi et al. (2017) and are broadly unaltered by the consideration of transaction costs,

lack of liquidity, various model specifications or different sub-periods. By showing that long-short

allocations based on risk timing outperform long-short allocations based on equal weights, our

article extends to a long-short setting the conclusions that Kirby and Ostdiek (2012) drew in a

long-only context.

Focusing exclusively on momentum and term structure, we show that sophistication in the

weighting scheme can generate added performance relative to the naive weights typically employed.

Other strategies (based on e.g., skewness, value, volatility, liquidity) have been shown to work well

in commodity futures markets. It remains to be tested whether the equal-weighting scheme then

applied is optimal. We hope that our analysis will instigate further research in this regard.
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Appendix A. Summary statistics for the risk factors

The table presents summary statistics for the excess returns of long-only and long-short portfolios. AVG is a long-
only equally-weighted monthly-rebalanced portfolio of all commodity futures, CARRY, MOM and LIQ are equally-
weighted monthly-rebalanced long-short portfolios based on roll-yields, past performance and liquidity ratios, respec-
tively. Mean, volatility and downside volatility (relative to a zero excess return) have been annualized, significance
t-ratios for the annualized mean excess returns are shown in parentheses. Bold fonts denote significance at the 5%
level or better. Sharpe (Sortino) ratios are Mean over Volatility (Downside volatility using 0% as threshold). Omega
ratios are the probability of gains divided by the probability of losses using 0% as threshold. The analysis spans the
sample January 1980 to April 2016.

Long-only portfolios Long-short portfolios

AVG S&P-GSCI CARRY MOM LIQ

Mean 0.0169 0.0341 0.0652 0.0520 0.0569
tstat (-0.68) (-0.83) (-3.00) (-2.99) (-2.87)
Volatility 0.12 0.20 0.12 0.13 0.11
Downside volatility 0.09 0.14 0.08 0.08 0.06
Skewness -0.61 -0.31 -0.20 -0.05 0.36
Ex. kurtosis 2.88 2.24 2.82 0.75 0.93
JB p.value 0.00 0.00 0.00 0.00 0.00
VaR (95%) -0.05 -0.10 -0.05 -0.06 -0.04
CVaR (95%) -0.08 -0.13 -0.07 -0.08 -0.06
Max drawdown 0.31 0.52 0.27 0.27 0.22
Sharpe ratio 0.14 0.17 0.57 0.40 0.53
Sortino ratio 0.19 0.24 0.83 0.64 0.96
Omega ratio 1.11 1.14 1.56 1.35 1.51
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Figure 1: Aggregated long and short momentum allocations
This figure shows the evolution of the aggregated long and short positions of the momentum strategies. The dark
(light) area on each graph represents the sum of the long (short) weights. The dark (light) line represents the
future value of $1 invested in the momentum (AVG) portfolio, where AVG is a long-only equally-weighted monthly-
rebalanced portfolio of all commodity futures. EW stands for equal weights. PU, NE, DA, MV, and MIN stand for
power utility, negative exponential utility, power utility with disappointment aversion, mean variance, and minimum
variance, respectively. VT, RRT, BT, VaRT, and CVaRT stand for volatility timing, reward-to-risk timing, beta-
timing, Value-at-Risk timing, and Conditional Value-at-Risk timing, respectively.
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Figure 2: Aggregated long and short term structure allocations
This figure shows the evolution of the aggregated long and short positions of the term structure strategies. The
dark (light) area on each graph represents the sum of the long (short) weights. The dark (light) line represents
the future value of $1 invested in the term structure (AVG) portfolio, where AVG is a long-only equally-weighted
monthly-rebalanced portfolio of all commodity futures. EW stands for equal weights. PU, NE, DA, MV, and MIN
stand for power utility, negative exponential utility, power utility with disappointment aversion, mean variance, and
minimum variance, respectively. VT, RRT, BT, VaRT, and CVaRT stand for volatility timing, reward-to-risk timing,
beta-timing, Value-at-Risk timing, and Conditional Value-at-Risk timing, respectively.
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Table 1: Risk and performance of momentum portfolios under various weighting schemes
Panel A presents summary statistics for the excess returns of long-short momentum portfolios under various weighting
schemes. Panels B and C report parameter estimates, Newey-West t-statistics and adjusted R2 obtained from
regressions of the excess returns of a given naive or sophisticated strategy on the excess returns of the relevant
risk factors. PU, NE, DA, MV, and MIN stand for power utility, negative exponential utility, power utility with
disappointment aversion, mean variance utility, and minimum variance, respectively. VT, RRT, BT, VaRT and
CVaRT stand for volatility timing, reward-to-risk timing, beta-timing, Value-at-Risk timing, and Conditional Value-
at-Risk timing, respectively. Mean, volatility, downside volatility (relative to a zero excess return) and abnormal
returns (α) have been annualized, Newey-West t-ratios are shown in parentheses, t-statistics for the null hypothesis
that a given sophisticated strategy generates the same mean excess return as its equal-weight counterpart are reported
under the heading “ew tstat”. Bold fonts denote significance at the 5% level or better. Sharpe (Sortino) ratios are
mean over volatility (downside volatility using 0% as threshold). Omega ratios are the probability of gains divided
by the probability of losses using 0% as threshold. AVG is a long-only equally-weighted monthly-rebalanced portfolio
of all commodity futures, CARRY and MOM are equally-weighted monthly-rebalanced long-short portfolios based
on roll-yields and past performance, respectively. The analysis spans the sample January 1980 to April 2016.

Equal Optimized weights Risk-timing weights

Weights PU NE DA MV MIN VT RRT BT VaRT CVaRT

Panel A: Summary statistics
Mean 0.0619 0.0749 0.0739 0.0749 0.0779 0.0588 0.0612 0.0919 0.0813 0.0625 0.0620
tstat (3.80) (1.06) (1.22) (1.06) (1.35) (4.23) (4.04) (3.55) (2.39) (4.06) (4.08)
ew tstat (0.00) (-0.24) (-0.26) (-0.24) (-0.30) (0.38) (0.08) (-2.33) (-0.79) (-0.13) (-0.01)
Volatility 0.08 0.35 0.31 0.35 0.35 0.06 0.06 0.13 0.19 0.07 0.07
Downside volatility 0.06 0.25 0.23 0.25 0.25 0.04 0.04 0.10 0.13 0.05 0.05
Skewness -0.22 -0.35 -0.46 -0.35 -0.34 -0.07 0.12 -0.57 -0.17 -0.03 0.01
Ex. kurtosis 1.64 3.40 4.00 3.40 3.38 2.37 2.13 4.82 2.75 2.22 2.07
JB p.value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VaR (95%) -0.04 -0.16 -0.13 -0.16 -0.16 -0.02 -0.03 -0.05 -0.08 -0.03 -0.03
CVaR (95%) -0.05 -0.24 -0.21 -0.24 -0.23 -0.03 -0.04 -0.08 -0.12 -0.04 -0.04
Max drawdown 0.20 0.86 0.77 0.86 0.86 0.16 0.17 0.40 0.50 0.18 0.18
Sharpe ratio 0.74 0.21 0.24 0.21 0.22 0.97 0.95 0.69 0.44 0.87 0.87
Sortino ratio 1.08 0.29 0.32 0.29 0.31 1.45 1.50 0.92 0.63 1.31 1.34
Omega ratio 1.76 1.18 1.21 1.18 1.19 2.12 2.06 1.73 1.40 1.95 1.94

Panel B: Regression analysis relative to the equal-weight benchmark
α -0.0560 -0.0490 -0.0560 -0.0524 0.0229 0.0236 0.0099 -0.0083 0.0126 0.0121

(-1.09) (-1.11) (-1.09) (-1.03) (2.98) (3.26) (0.84) (-0.36) (2.98) (2.91)
β 2.11 1.99 2.11 2.10 0.58 0.61 1.32 1.45 0.81 0.81

(8.45) (8.99) (8.45) (8.48) (11.96) (15.66) (19.01) (14.22) (33.91) (35.60)

Adj. R2 0.25 0.28 0.25 0.25 0.65 0.61 0.70 0.42 0.89 0.89

Panel C: Regression analysis relative to the Bakshi et al. (2017) benchmark
α 0.0424 -0.0219 -0.0135 -0.0219 -0.0182 0.0440 0.0530 0.0535 0.0412 0.0489 0.0484

(4.26) (-0.40) (-0.28) (-0.40) (-0.33) (5.39) (5.41) (3.34) (1.47) (5.31) (5.30)
βAV G 0.00 0.39 0.35 0.39 0.38 0.01 0.01 0.20 0.31 0.02 0.01

(0.01) (2.15) (2.19) (2.15) (2.12) (0.17) (0.14) (2.05) (1.95) (0.25) (0.16)
βCARRY -0.01 0.28 0.25 0.28 0.28 0.05 -0.02 0.02 0.06 -0.02 -0.02

(-0.22) (1.35) (1.33) (1.35) (1.33) (2.17) (-0.70) (0.20) (0.57) (-0.57) (-0.53)
βMOM 0.39 1.39 1.25 1.39 1.38 0.21 0.18 0.65 0.60 0.29 0.28

(13.67) (9.14) (8.97) (9.15) (9.16) (8.71) (6.09) (10.73) (9.77) (9.99) (10.14)

Adj. R2 0.35 0.31 0.33 0.31 0.31 0.24 0.12 0.46 0.23 0.25 0.25
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Table 2: Risk and performance of term structure portfolios under various weighting schemes
Panel A presents summary statistics for the excess returns of long-short term structure portfolios under various
weighting schemes. Panels B and C report parameter estimates, Newey-West t-statistics and adjusted R2 obtained
from regressions of the excess returns of a given naive or sophisticated strategy on the excess returns of the relevant
risk factors. PU, NE, DA, MV, and MIN stand for power utility, negative exponential utility, power utility with
disappointment aversion, mean variance utility, and minimum variance, respectively. VT, RRT, BT, VaRT and
CVaRT stand for volatility timing, reward-to-risk timing, beta-timing, Value-at-Risk timing, and Conditional Value-
at-Risk timing, respectively. Mean, volatility, downside volatility (relative to a zero excess return) and abnormal
returns (α) have been annualized, Newey-West t-ratios are shown in parentheses, t-statistics for the null hypothesis
that a given sophisticated strategy generates the same mean excess return as its equal-weight counterpart are reported
under the heading “ew tstat”. Bold fonts denote significance at the 5% level or better. Sharpe (Sortino) ratios are
mean over volatility (downside volatility using 0% as threshold). Omega ratios are the probability of gains divided
by the probability of losses using 0% as threshold. AVG is a long-only equally-weighted monthly-rebalanced portfolio
of all commodity futures, CARRY and MOM are equally-weighted monthly-rebalanced long-short portfolios based
on roll-yields and past performance, respectively. The analysis spans the sample January 1980 to April 2016.

Equal Optimized weights Risk-timing weights

Weights PU NE DA MV MIN VT RRT BT VaRT CVaRT

Panel A: Summary statistics
Mean 0.0479 0.1041 0.0991 0.1041 0.1052 0.0409 0.0279 0.1149 0.1183 0.0387 0.0384
tstat (2.65) (0.81) (0.90) (0.81) (1.79) (3.52) (2.06) (3.58) (2.94) (2.46) (2.46)
ew tstat (0.00) (-1.04) (-1.08) (-1.03) (-1.06) (0.83) (2.64) (-3.21) (-2.29) (2.10) (2.26)
Volatility 0.08 0.34 0.30 0.34 0.33 0.06 0.07 0.14 0.19 0.07 0.07
Downside volatility 0.05 0.23 0.21 0.23 0.23 0.03 0.04 0.08 0.12 0.04 0.04
Skewness 0.37 -0.15 -0.19 -0.16 -0.15 0.35 0.45 0.22 0.21 0.50 0.51
Ex. kurtosis 3.30 3.58 3.84 3.58 3.57 1.76 3.61 1.67 3.94 3.24 3.39
JB p.value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VaR (95%) -0.03 -0.14 -0.12 -0.14 -0.14 -0.02 -0.03 -0.06 -0.07 -0.03 -0.03
CVaR (95%) -0.05 -0.21 -0.19 -0.21 -0.21 -0.03 -0.04 -0.08 -0.11 -0.04 -0.04
Max drawdown 0.22 0.86 0.78 0.86 0.86 0.13 0.17 0.30 0.57 0.18 0.18
Sharpe ratio 0.58 0.31 0.33 0.31 0.31 0.73 0.43 0.84 0.62 0.56 0.55
Sortino ratio 0.91 0.45 0.48 0.45 0.46 1.24 0.67 1.40 0.97 0.91 0.90
Omega ratio 1.57 1.28 1.31 1.28 1.28 1.76 1.41 1.91 1.65 1.55 1.54

Panel B: Regression analysis relative to the equal-weight benchmark
α 0.0617 0.0547 0.0616 0.0630 0.0150 -0.0035 0.0818 0.0875 0.0003 -0.0005

(1.10) (1.12) (1.10) (1.13) (3.07) (-0.66) (3.48) (2.92) (0.09) (-0.14)
β 0.89 0.93 0.89 0.88 0.54 0.66 0.69 0.64 0.80 0.81

(2.92) (3.42) (2.92) (2.92) (12.59) (18.16) (4.71) (2.85) (44.30) (44.03)

Adj. R2 0.05 0.07 0.05 0.05 0.64 0.70 0.18 0.08 0.91 0.92

Panel C: Regression analysis relative to the Bakshi et al. (2017) benchmark
α 0.0306 0.0058 0.0087 0.0058 0.0075 0.0265 0.0214 0.0666 0.0605 0.0263 0.0263

(3.65) (0.11) (0.19) (0.11) (0.15) (4.19) (2.52) (3.47) (2.08) (3.22) (3.31)
βAV G -0.42 0.11 0.05 0.11 0.10 -0.17 -0.31 -0.08 0.26 -0.35 -0.36

(-9.84) (0.59) (0.32) (0.59) (0.57) (-6.20) (-8.33) (-0.78) (1.60) (-9.57) (-10.21)
βCARRY 0.40 0.62 0.61 0.62 0.62 0.28 0.21 0.38 0.56 0.30 0.30

(14.46) (3.03) (3.36) (3.03) (3.02) (9.54) (5.09) (4.62) (5.12) (10.26) (10.81)
βMOM -0.03 1.08 0.95 1.08 1.07 -0.02 -0.04 0.47 0.33 -0.02 -0.02

(-1.05) (8.11) (8.19) (8.11) (8.12) (-1.12) (-1.42) (10.88) (4.61) (-0.68) (-0.96)

Adj. R2 0.68 0.26 0.28 0.26 0.26 0.46 0.46 0.38 0.23 0.62 0.63
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Table 3: Transaction costs
The table studies the impact of transaction costs on the performance of various momentum (Panel A) and term
structure (Panel B) strategies. Turnover measures the monthly average number of trades per strategy. Net mean
excess returns and net Sharpe ratios are computed after deducting from the gross returns round-trip transaction
costs of 8.6 b.p. PU, NE, DA, MV, and MIN stand for power utility, negative exponential utility, power utility with
disappointment aversion, mean variance, and minimum variance, respectively. VT, RRT, BT, VaRT, and CVaRT
stand for volatility timing, reward-to-risk timing, beta-timing, Value-at-Risk timing and Conditional Value-at-Risk
timing, respectively. Bold fonts denote significance at the 5% level or better and t-ratios are shown in parentheses.
The analysis spans the sample January 1980 to April 2016.

Optimized weights Risk-timing weights

EW PU NE DA MV MIN VT RRT BT VaRT CVaRT

Panel A: Momentum strategies
Monthly turnover

Mean 1.52 1.71 1.68 1.71 1.73 1.58 1.58 1.59 1.66 1.56 1.55
Median 1.49 1.99 1.88 1.99 1.99 1.60 1.58 1.61 1.70 1.55 1.53
Minimum 0.75 0.01 0.16 0.01 0.00 0.45 0.59 0.69 0.61 0.72 0.70
Maximum 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Net Mean return 0.05 0.06 0.06 0.06 0.06 0.04 0.04 0.08 0.06 0.05 0.05
(3.80) (1.06) (1.22) (1.06) (1.35) (4.23) (4.04) (3.55) (2.39) (4.06) (4.08)

Net Sharpe ratio 0.55 0.16 0.18 0.16 0.17 0.70 0.67 0.57 0.34 0.65 0.65

Panel B: Term structure strategies
Monthly turnover

Mean 1.57 1.76 1.73 1.76 1.76 1.64 1.61 1.64 1.73 1.58 1.57
Median 1.54 2.00 1.92 2.00 2.00 1.64 1.61 1.69 1.84 1.56 1.54
Minimum 0.84 0.01 0.17 0.01 0.01 0.76 0.62 0.71 0.56 0.75 0.71
Maximum 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Net Mean return 0.03 0.09 0.08 0.09 0.09 0.02 0.01 0.10 0.10 0.02 0.02
(2.65) (0.81) (0.90) (0.81) (1.79) (3.52) (2.06) (3.58) (2.94) (2.46) (2.46)

Net Sharpe ratio 0.38 0.26 0.27 0.26 0.26 0.43 0.15 0.72 0.53 0.32 0.32
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Table 4: Liquidity risk
The table studies the impact of lack of liquidity on the performance of various momentum (Panel A) and term
structure (Panel B) strategies. SR(All) and SR(Liquid) are the Sharpe ratios of the strategies when implemented on
the whole cross section and the 90% cross section that presents the highest liquidity ratios (Amihud et al., 1997),
respectively. α, βLIQ, Newey-West t-statistics and adjusted-R2 are obtained from regressions of the excess returns
of a given naive or sophisticated strategy on the excess returns of the three-factor benchmark of Bakshi et al. (2017)
augmented with a liquidity risk premium (LIQ). Alpha has been annualized. PU, NE, DA, MV, and MIN stand
for power utility, negative exponential utility, power utility with disappointment aversion, mean variance utility, and
minimum variance, respectively. VT, RRT, BT, VaRT, and CVaRT stand for volatility timing, reward-to-risk timing,
beta-timing, Value-at-Risk timing and Conditional Value-at-Risk timing, respectively. Bold fonts denote significance
at the 5% level or better. The analysis spans the sample January 1980 to April 2016.

Equal Optimized weights Risk-timing weights

Weights PU NE DA MV MIN VT RRT BT VaR CVaR

Panel A: Momentum strategies
SR (all) 0.74 0.21 0.24 0.21 0.22 0.97 0.95 0.69 0.44 0.87 0.87
SR (Liquid) 0.69 0.10 0.11 0.10 0.63 0.92 0.91 0.63 0.43 0.84 0.83
α 0.0443 -0.0204 -0.0135 -0.0205 -0.0162 0.0440 0.0536 0.0536 0.0386 0.0499 0.0494

(4.28) (-0.37) (-0.28) (-0.37) (-0.29) (5.31) (5.35) (3.14) (1.35) (5.18) (5.16)
βLIQ -0.04 -0.03 -0.00 -0.03 -0.04 0.00 -0.01 0.00 0.05 -0.02 -0.02

(-0.89) (-0.13) (-0.00) (-0.13) (-0.17) (0.03) (-0.42) (-0.02) (0.36) (-0.60) (-0.61)

Adj − R2 0.36 0.31 0.33 0.31 0.31 0.24 0.13 0.46 0.23 0.26 0.26

Panel B: Term stucture strategies
SR (all) 0.58 0.31 0.33 0.31 0.31 0.73 0.43 0.84 0.62 0.56 0.55
SR (Liquid) 0.47 0.21 0.21 0.21 0.22 0.60 0.36 0.67 0.52 0.46 0.46
α 0.0286 0.0145 0.0149 0.0145 0.0166 0.0256 0.0188 0.0673 0.0552 0.0235 0.0236

(3.42) (0.28) (0.33) (0.28) (0.33) (3.98) (2.08) (3.48) (1.93) (2.78) (2.87)
βLIQ 0.04 -0.16 -0.12 -0.16 -0.17 0.02 0.05 -0.01 0.10 0.05 0.05

(1.74) (-0.88) (-0.70) (-0.88) (-0.92) (0.67) (1.67) (-0.22) (0.91) (2.32) (2.18)

Adj − R2 0.68 0.27 0.28 0.27 0.27 0.47 0.47 0.38 0.23 0.63 0.64
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Table 5: Model parameters
The table studies the sensitivity of the Sharpe ratios of various momentum (Panel A) and term structure (Panel
B) strategies to the choice of weighting ranking periods (Rweight), momentum ranking periods(Rmom), holding
period (H), and tuning parameter (η). PU, NE, DA, MV, and MIN stand for power utility, negative exponential
utility, power utility with disappointment aversion, mean variance, and minimum variance, respectively. VT, RRT,
BT, VaRT, and CVaRT stand for volatility timing, reward-to-risk timing, beta-timing, Value-at-Risk timing and
Conditional Value-at-Risk timing, respectively. The analysis spans the sample January 1980 to April 2016.

Equal Optimized weights Risk-timing weights

Weights PU NE DA MV MIN VT RRT BT VaR CVaR

Panel A: Momentum-based strategies
Rweight = 3 0.74 0.17 0.17 0.17 0.18 0.91 0.79 0.71 0.54 0.87 0.69
Rweight = 6 0.74 0.12 0.15 0.12 0.13 1.03 0.86 0.68 0.52 0.84 0.85
Rweight = 18 0.76 -0.11 -0.06 -0.11 -0.10 0.96 0.92 0.36 0.40 0.85 0.87
Rmom = 3 0.86 0.36 0.39 0.36 0.37 0.81 0.94 0.79 0.47 0.94 0.91
Rmom = 6 0.65 0.20 0.22 0.20 0.21 0.84 0.77 0.67 0.35 0.77 0.76
H = 2 0.69 0.11 0.14 0.11 0.32 0.94 0.78 0.56 0.40 0.76 0.77
H = 4 0.35 0.10 0.10 0.10 0.11 0.50 0.41 0.34 0.24 0.39 0.40
η = 2 0.73 0.56 0.44 0.89 0.92
η = 4 0.53 0.48 0.45 0.75 0.85

Panel B: Term structure-based strategies
Rweight = 3 0.36 0.05 0.05 0.05 0.05 0.40 0.28 0.65 0.51 0.41 0.43
Rweight = 6 0.40 -0.05 -0.03 -0.05 -0.05 0.46 0.29 0.63 0.54 0.40 0.39
Rweight = 18 0.47 0.08 0.11 0.08 0.08 0.60 0.34 0.38 0.41 0.40 0.41
H = 2 0.50 0.24 0.26 0.24 0.24 0.69 0.40 0.68 0.54 0.51 0.50
H = 4 0.54 0.18 0.19 0.18 0.19 0.58 0.33 0.37 0.42 0.45 0.46
η = 2 0.19 0.66 0.64 0.47 0.49
η = 4 0.08 0.55 0.64 0.32 0.39
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Table 6: Sub-sample analysis
The table studies the sensitivity of the Sharpe ratios of various momentum (Panel A) and term structure (Panel B)
strategies to different subsamples. PU, NE, DA, MV, and MIN stand for power utility, exponential utility, power
utility with disappointment aversion, mean variance, and minimum variance, respectively. VT, RRT, BT, VaRT,
and CVaRT stand for volatility timing, reward-to-risk timing, beta-timing, Value-at-Risk timing, and Conditional
Value-at-Risk timing, respectively. Periods of heightened versus reduced volatility in commodity (or equity) markets
is defined relative to the long-term average S&P-GSCI (S&P500) conditional volatility estimated from a GARCH(1,1)
model.

Equal Optimized weights Risk-timing weights

Weights PU NE DA MV MIN VT RRT BT VaR CVaR

Panel A: Momentum strategies
Pre financialization 0.98 0.26 0.28 0.26 0.27 1.18 1.15 0.81 0.71 1.12 1.13
Post financialization 0.29 0.08 0.10 0.08 0.08 0.63 0.63 0.40 -0.16 0.48 0.45
Low S&P-GSCI volatility 1.01 0.60 0.62 0.60 0.61 1.27 1.15 0.99 0.76 1.15 1.12
High S&P-GSCI volatility 0.52 -0.19 -0.16 -0.19 -0.18 0.79 0.79 0.46 0.22 0.66 0.67
Low S&P-500 volatility 0.85 0.31 0.35 0.31 0.32 1.12 1.07 0.90 0.58 1.02 0.97
High S&P-500 volatility 0.64 0.07 0.09 0.07 0.08 0.81 0.81 0.49 0.29 0.73 0.77
Jan 80 - Mar 87 0.71 0.16 0.16 0.16 0.18 1.15 0.92 0.46 0.15 0.84 0.87
Apr 87 - Jun 94 0.95 0.74 0.77 0.74 0.74 1.06 1.14 0.95 0.72 1.08 1.10
Jul 94 - Sep 01 1.64 0.29 0.33 0.29 0.29 2.27 1.85 1.24 1.23 1.90 1.87
Oct 01 - Dec 08 0.68 -0.06 0.01 -0.06 -0.04 0.86 0.99 0.84 0.32 0.85 0.85
Jan 09 - Apr 16 0.02 -0.12 -0.12 -0.12 -0.12 0.37 0.39 0.09 -0.22 0.22 0.19

Panel B: Term structure strategies
Pre financialization 0.79 0.36 0.38 0.36 0.36 0.83 0.64 1.00 0.98 0.81 0.80
Post financialization 0.12 0.17 0.19 0.17 0.17 0.55 0.01 0.49 -0.19 0.08 0.08
Low S&P-GSCI volatility 0.76 0.62 0.64 0.62 0.62 0.87 0.65 1.00 0.92 0.77 0.76
High S&P-GSCI volatility 0.43 -0.04 -0.01 -0.04 -0.04 0.63 0.26 0.69 0.44 0.39 0.39
Low S&P-500 volatility 0.61 0.40 0.43 0.40 0.40 0.76 0.45 0.95 0.83 0.56 0.51
High S&P-500 volatility 0.57 0.16 0.19 0.16 0.17 0.70 0.42 0.70 0.38 0.57 0.61
Jan 80 - Mar 87 0.79 0.74 0.73 0.74 0.75 0.71 0.67 0.94 0.72 0.78 0.85
Apr 87 - Jun 94 0.92 0.56 0.61 0.56 0.57 0.98 1.34 1.14 1.15 1.16 1.10
Jul 94 - Sep 01 1.27 0.29 0.31 0.29 0.29 1.50 0.81 1.22 1.11 1.34 1.22
Oct 01 - Dec 08 0.26 0.00 0.02 0.00 0.02 0.39 0.07 1.01 0.45 0.19 0.18
Jan 09 - Apr 16 -0.05 -0.13 -0.11 -0.13 -0.13 0.49 -0.11 0.02 -0.21 -0.10 -0.08
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