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Abstract

Our study lies at the intersection of the literature on the diversification benefits of commod-

ity futures and the literature on style integration. It augments the traditional asset mix of

investors with a long-short portfolio that integrates the styles that matter to the pricing of

commodity futures. Treating the style-integrated portfolio of commodities as part of the

strategic mix of investors is found to enhance out-of-sample performance and reduce crash

risk compared to the alternatives considered thus far. The conclusion holds across tradi-

tional asset mix, portfolio allocation methods, integration strategies, and sub-periods. The

diversification benefits of style integration also persist, albeit lower, in a long-only setting.
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Low), jmiffre@audencia.com (Joëlle Miffre), rfaff@bond.edu.au (Robert Faff)



1. Introduction

Are investors better off adding commodities to their traditional portfolio of equities and

bonds? Which commodity portfolio is optimal as part of the strategic mix? Which asset

allocation technique designs a diversified portfolio with the best risk-adjusted performance

and lowest crash risk? The literature has investigated these issues for decades and drawn

various conclusions on i) the commodity portfolio that shall be considered as a building block

of the strategic mix, and ii) the methodology employed to allocate wealth to the equity, bond,

and commodity building blocks.

In-sample studies have concluded that commodities should be part of an investor’s asset

mix.1 The conclusion holds irrespective of the choice of the commodity class (e.g., individual

commodity futures, long-only and long-short commodity portfolios) and is unchallenged by

the weighting scheme adopted to allocate wealth to the various asset classes (fixed weights,

optimized weights, stochastic dominance weights, volatility timing weights). In-sample stud-

ies, however, suffer from the major drawback of assuming perfect knowledge of the assets’

returns, risks and correlations through the entirety of the sample period. Clearly, such

perfect foresight is unreasonable, and these studies can thus only give us an idea of the max-

imum diversification benefits that could have been obtained in the past. It follows that the

conclusions drawn are of limited value to asset managers interested in designing practical

investment solutions. Skiadopoulos (2012) concurred by stating that “there is a need to ex-

plore commodity investment vehicles that would make the investor better off in a real-time,

out-of-sample setting.”

Bearing this in mind, many studies have analyzed the benefits of diversification on an

out-of-sample basis, this time assuming that the strategic mix defined at the end of a given

1Bodie and Rosansky (1980); Fortenbery and Hauser (1990); Ankrim and Hensel (1993); Anson (1999);
Jensen et al. (2000, 2002); Daskalaki and Skiadopoulos (2011); Bessler and Wolff (2015); Daskalaki et al.
(2017); Yan and Garcia (2017); Fethke and Prokopczuk (2018).

2



month is used to structure a diversified portfolio over the following month.2 The literature

is much more divided on the above questions. Benefits tend to be stronger when considering

more sophisticated long-only and long-short commodity portfolios and tend to disappear

when investors incorporate naive long-only commodity portfolios (such as the S&P-GSCI)

into their strategic mix (Daskalaki and Skiadopoulos, 2011; Blitz and de Groot, 2014; Kremer,

2015; Lombardi and Ravazzolo, 2016; Yan and Garcia, 2017; Fethke and Prokopczuk, 2018).

The method used to design the strategic mix also seems to matter. For example, i) asset

allocations that maximize expected utility are often found to be sub-optimal relative to

schemes based on fixed weights, volatility timing or stochastic dominance (Daskalaki and

Skiadopoulos, 2011; Bessler and Wolff, 2015; Daskalaki et al., 2017) and ii) forward looking

asset allocations that account for predictability beat backward-looking asset allocations that

ignore it (Gao and Nardari, 2018).

We contribute to the above literature on commodity allocation by intersecting it with

the literature on style integration. Style integration refers to forming a portfolio that buys

commodities with strong buy recommendations across styles, sells commodities with strong

sell recommendations across styles, and assigns near-zero weights to commodities with weak

or conflicting signals.3 This literature has established that such style-integrated portfolios

offer better risk-adjusted performance and lower crash risk than long-only or single-style

portfolios. These benefits accrue across asset classes such as equities (Brandt et al., 2009;

Fischer and Gallmeyer, 2016), currencies (Kroencke et al., 2014; Barroso and Santa-Clara,

2Daskalaki and Skiadopoulos (2011); You and Daigler (2013); Blitz and de Groot (2014); Bessler and
Wolff (2015); Kremer (2015); Lombardi and Ravazzolo (2016); Daskalaki et al. (2017); Yan and Garcia (2017);
Fethke and Prokopczuk (2018); Gao and Nardari (2018).

3Let us assume that the style-integrated portfolio combines K signals. Let us assume further that half of
the signals recommed buying commodity i, while the other half recommend selling it, and that all K signals
recommend buying commodity j. Reflecting upon this, the integrated portfolio is likely to ignore commodity
i (for which we have no strong buy or sell recommendation) and will be very tilted towards commodity j
(for which we have K buy recommendations). The actual allocations assigned to commodities i and j reflect
these simple principles and are detailed in Section 2.1.1.
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2015) and on a cross-market analysis (Fernandez-Perez et al., 2019).

Since equally weighting the signals is the best style integration method (Fernandez-Perez

et al., 2019), it is appropriate to revisit the conclusions on the diversification benefits of

commodities using the integrated portfolio as a commodity building block in place of the

commodity portfolios used thus far. By doing so, we consider whether the characteristics that

govern the pricing of commodity futures such as carry, hedging pressure, momentum, value,

or skewness can be used to design portfolios diversified across asset classes with enhanced

out-of-sample performance.

There are three reasons why the commodity long-short style-integrated portfolio that we

assess could be considered as a worthy candidate for inclusion into traditional portfolios of

equities and fixed income securities. First, over the sample analysed, the portfolio presents

a higher Sharpe ratio (1.02) than that of any of the building blocks considered. Second, it

often has lower return correlations with equity and fixed income portfolios than any of the

other commodity portfolios that we study. Third, its conditional correlations with equities

are particularly low in periods of heightened volatility in equity markets. This finding is

welcome: The risk diversification emanating from low conditional correlations seems to occur

when most needed.

The diversification benefits of the style-integrated commodity portfolio are measured by

comparing the out-of-sample risk-adjusted performance and crash risk profile of two portfo-

lios: one that solely invests into stocks and bonds and another that adds the style-integrated

commodity portfolio to the strategic mix. The analysis is conducted considering various

versions of the integrated portfolio (long-only and long-short) as well as various fixed income
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and equity building blocks.4 Finally, in an effort to draw robust conclusions and following the

literature on diversification, we consider various approaches to define the allocation to the

equity, fixed income and commodity building blocks ranging from a naive equally-weighted

scheme to more sophisticated optimization-based and volatility-timed approaches. Through-

out the paper, the analysis is conducted on an out-of-sample basis; as such, it has practical

implications for asset managers interested in style integration and diversification across asset

classes.

We find that treating the long-short style-integrated commodity portfolio as a building

block consistently provides diversification benefits to portfolios of stocks and bonds. On

average, adding the long-short commodity integrated portfolio to the traditional asset mix

of investors enhances the Sharpe ratio of the stock and bond portfolios by 61.9%. Regression

analysis demonstrates that, by including the long-short integrated commodity portfolio in

their traditional portfolios, investors earn positive and statistically significant alphas that

average 2.42% a year across portfolios with a range from 0.84% (t-statistic of 4.46) to 3.36%

(t-statistic of 4.92).

Albeit to a lower extent than with a long-short allocation, style integration adds value

also in a long-only setting. This finding has significant implications for the field of portfolio

management: It is reassuring to see that the benefits of diversification are not just open

to managers with long-short mandates; those benefits are also available to managers who

are restricted from taking short positions. Confirming previous findings (Daskalaki and

Skiadopoulos, 2011; Fethke and Prokopczuk, 2018), we note a failure to enhance risk-adjusted

performance when using naive long-only commodity portfolios (S&P-GSCI or a long-only

4The traditional building blocks of stocks and bonds include i) long positions in traditional indices
(Barclays US Aggregate Bond Index and the S&P500 Index), ii) the five factors of Fama and French (2015)
alongside the momentum factor of Carhart (1997), and iii) integrated portfolios of stock index futures
and fixed income futures, whereby the latter portfolios combine many signals in a manner similar to the
integration strategy used for commodity futures.
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equally-weighted and monthly-rebalanced portfolio of commodity futures) as building blocks.

The superiority of the strategic mix that allows for style integration holds irrespective of the

stock and bond building blocks considered and across portfolio allocation methods. This

conclusion is also robust to the consideration of a two-step approach to style integration and

to the analysis of various sub-periods.

Kremer (2015) and Daskalaki et al. (2017) found that, unlike naive first-generation com-

modity indices, second- and third-generation commodity indices provide diversification ben-

efits.5 Fethke and Prokopczuk (2018) nuanced these results by noting that some third-

generation commodity indices weaken the out-of-sample performance of the diversified port-

folio, suggesting that they should be excluded from the strategic mix of investors. Our

conclusions extend this literature by showing that asset managers should, first and foremost,

construct well-designed long-only or long-short integrated portfolios and, then and only then,

allocate wealth to these efficient building blocks.

The remainder of the article is structured as follows. Section 2 describes the methodology

used, focusing in particular on the integration approach and on the techniques used to

allocate wealth to the building blocks. Section 3 details the data and sampling. Section 4

presents the results and highlights the diversification benefits of style integration. Finally,

Section 5 concludes.

5Miffre (2014) defined i) first generation commodity indices as naive, broad-based indices of long-only
commodity futures (e.g., S&P-GSCI), ii) second generation indices as long-only indices that capitalize on
backwardation and/or mitigate the harmful impact of contango on performance, and iii) third generation
indices as structured products that buy commodity futures deemed to appreciate in value (e.g., backwardated
assets) and short commodity futures deemed to depreciate in value (e.g., contangoed assets). Miffre (2014)
argued that third-generation indices outperform their first and second-generation counterparts, as they
recognize the fundamentals of commodity futures pricing (see, e.g., Miffre (2016), for a review).
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2. Methodology

This section details how the integrated portfolios are formed (Section 2.1), defines the port-

folios of stocks, bonds, and commodities used as building blocks (Section 2.2), presents the

techniques used to allocate wealth to these building blocks (Section 2.3), and describes the

methodologies employed to measure the benefits of diversification (Section 2.4).

2.1. Forming the integrated portfolios

2.1.1 Integration approach

Following Fernandez-Perez et al. (2019), the allocation of the integrated portfolio to the N

commodity futures present at the time of portfolio formation, Φt, is given by the following

equation

Φt = Θt × Ωt =


θ1,1,t . . . θ1,K,t

...
. . .

...

θN,1,t . . . θN,K,t

×

ω1,t

...

ωK,t

 (1)

i = {1, . . . , N} denotes the cross section of available commodity futures, t = {1, . . . , T}

denotes the portfolio formation time, and k = {1, . . . , K} denotes a signal. Ωt is a K × 1

vector of weights that defines the allocation of the integrated portfolio to each of the K

single-style portfolios. Following Fernandez-Perez et al. (2019), we assign equal weights to

each of the K styles and thus, ωk,t = 1/K. Θt is a N × K matrix with elements θi,k,t

that determines the weight of the ith futures contract in the kth single-style portfolio at

time t. Following Brandt et al. (2009) or Barroso and Santa-Clara (2015), θi,k,t equals the

characteristic or signal cross-sectionally standardized, namely

θi,k,t = (yi,k,t − ȳk,t)/σk,t (2)
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where yi,k,t is the value of signal k for futures contract i at time t with cross-sectional mean

and standard deviation denoted as ȳk,t and σk,t, respectively. A positive θi,k,t indicates a

long (L) position and a negative θi,k,t indicates a short (S) position. The integrated portfolio

is fully collateralized and thus, the allocation to the N assets defined in Equation (1) is

normalized to ensure full investment. Mathematically,

φ̃i,t =
φi,t∑N
i=1 |φi,t|

(3)

to ensure
∑N

i=1 φ̃i,t = 1. Given the cross-sectional standardization of the individual signals

and the full collateralization of the integrated portfolio,
∑NL

i=1 φ̃i,t =
∑NS

i=1 φ̃i,t = 0.5 with

NL + NS = N . The resulting portfolio is long-short in nature and is thereafter labelled as

the long-short integrated risk premium (LS-IRP) portfolio.

Aside from the LS-IRP portfolio, we also consider a long-only integrated risk premium

(LO-IRP) portfolio that solely buys commodity futures that are deemed to appreciate ac-

cording to the integrated strategy. The allocation to the NL futures contracts is then defined

as φ̃Li,t, where φ̃Li,t =
φLi,t∑NL
i=1 |φLi,t|

, to ensure full collateralization. We consider this long-only port-

folio to reflect upon i) the preference of investors for long-only portfolios, ii) the long-only

restrictions that are often imposed on the mandates of institutional asset managers, and iii)

a recent literature that studies the diversification benefits of well-designed long-only com-

modity portfolios based on e.g. momentum (Blitz and de Groot, 2014; Daskalaki et al., 2017;

Yan and Garcia, 2017).

To avoid look-ahead bias, the construction of the long-short integrated risk premium (LS-

IRP) portfolio and of the long-only integrated risk premium (LO-IRP) portfolio is conducted

on an out-of-sample basis: Each style-integrated portfolio formed at the end of month t is

held for a month, at which time another style-integrated portfolio is formed, and so forth,

until the sample ends. We address concerns pertaining to transaction costs by systematically

considering as part of our strategic asset allocation the excess returns of the IRP portfolios
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net of transaction costs, rIRP,t+1, which we measure as follows:

rIRP,t+1 =
N∑
i=1

φ̃i,tri,t+1 −
N∑
i=1

TC|φ̃i,t+1 − φ̃i,t(1 + ri,t+1)| (4)

where ri,t+1 is the excess return of the ith commodity between t and t+1, TC is a conservative

level of transaction costs equal to 8.6 b.p. (Marshall et al., 2012), and φ̃i,t(1 + ri,t+1) is the

actual portfolio weight right before the next rebalancing time t+ 1.

2.1.2 Integrated signals

The literature on the pricing of commodity futures contracts has identified a large set of

characteristics or styles that explain the time series and the cross section of commodity

futures prices. It is important to note that our objective here is not to define the integrated

portfolio with the best out-of-sample performance but rather to demonstrate the benefits of

diversification given a chosen integrated portfolio. Thus, we do not claim to be exhaustive

in our choice of signals and have simply selected the five signals that Fernandez-Perez et al.

(2019) used in their study of cross-market integration (carry, momentum, value, skewness,

liquidity) alongside three extra signals that are commodity-specific (hedging pressure, basis-

momentum, relative basis).

The signals, yi,k,t for k = {1, . . . , 8} in Equation (2), are such that higher values indicate

longer positions. They are constructed as follows:

• Carry. Carry is defined as the slope of the term structure of commodity futures prices.

Mathematically, yi,1,t = ln(f 1
i,t)− ln(f 2

i,t), where fki,t denotes the futures price with lo-

cation k on the term structure of commodity i at time t. The use of carry as a signal

for asset allocation emanates from the theory of storage of Kaldor (1939), Working

(1949), and Brennan (1958). The theory of storage asserts that a positive carry indi-

cates backwardation due to scarcity, while a negative carry indicates contango due to

abundance. In turn, backwardation (contango) predicts an appreciation (depreciation)
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in the futures price in the short run (Erb and Harvey, 2006; Gorton and Rouwenhorst,

2006; Szymanowska et al., 2014). Koijen et al. (2018) extended the carry signal to

markets other than commodities.

• Momentum. Momentum is defined as the mean of the daily returns of front-end

futures contracts, ri,t, over the prior year. Mathematically, yi,2,t = 1
252

∑251
j=0 ri,t−j.

Asness et al. (2013) showed that recent winners outperform recent losers across markets.

• Value. The value signal is measured as the ratio of the front-end futures price averaged

over a period spanning 4.5 to 5.5 years before portfolio formation to the front-end

futures price at the time of portfolio formation. Namely, we have yi,3,t =
1
D

∑D−1
d=0 f1

i,t−d
f1
i,t

where D is the number of trading days in the 4.5 to 5.5 years before t (Asness et al.,

2013). Assets with high value signals are currently underpriced and thus expected to

outperform. Again, this signal is priced across markets.

• Skewness. The skewness signal is defined as the negative of the third central mo-

ment of the return distribution over the year prior to the formation of the portfolio.

Mathematically, yi,4,t = −[ 1
252

∑251
d=0(ri,t−d − µi,t)3]/σ3

i,t, where µi,t and σi,t denote the

mean and standard deviation, respectively, of daily front-end returns over the previous

year. The minus sign is here to denote that we buy contracts with higher yi,4,t signals

and presumably negative skewness and short contracts with lower yi,4,t signals and pre-

sumably positive skewness. Evidence in favor of the pricing of skewness can be found

across markets; see, for example, Amaya et al. (2015) for equities, Chiang (2016) for

fixed income securities, and Fernandez-Perez et al. (2018) for commodity futures.

• Liquidity. The liquidity signal, based on Amihud (2002) illiquidity measure, is defined

as yi,5,t = 1
D

∑D−1
d=0

|ri,t−d|
$V olumei,t−d

, where D is the number of days over the previous two

months. This signal also applies across markets; see, for example, Amihud et al. (2015)

for equities and fixed income securities and Szymanowska et al. (2014) for commodities.
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• Hedging pressure. The hedging pressure signal is defined as the net short positions

of large hedgers relative to their total position as averaged over the weeks of the prior

year. Formally, yi,6,t = 1
52

∑51
w=0

Shorti,t−w−Longi,t−w
Shorti,t−w+Longi,t−w

, where Shorti,w and Longi,w are the

week w short and long open interests of large hedgers (i.e., commercial traders) on com-

modity futures i. The use of hedging pressure as a signal for asset allocation emanates

from the hedging pressure hypothesis of Cootner (1960) and Hirshleifer (1989). The

theory asserts that net short hedging indicates backwardation, while net long hedging

indicates contango. Evidence in support of the theory can be found in, for example,

Bessembinder (1992) and Basu and Miffre (2013).

• Basis momentum. The basis momentum signal is defined as the difference between

the 252-day averaged returns of the front- and second-nearest contracts. Mathemat-

ically, yi,7,t = Mom1
i,t −Mom2

i,t, where Momj
i,t denotes the momentum signal based

on the jth futures returns. Higher values of the basis momentum signal predict higher

excess returns in the near future. The signal is deemed to capture imbalances in the

supply and demand of futures contracts during episodes of high volatility and illiquidity

(Boons and Prado, 2019).

• Relative basis. This relative basis signal, defined as yi,8,t = ln(f 1
t )−2ln(f 2

t )+ ln(f 3
t ),

measures the curvature of the futures price curve. Positive values of the relative value

signal indicate backwardation (due to high convenience yield and scarcity) and predict

higher excess returns in the near future (Gu et al., 2021).

2.2. Building blocks

Asset allocation is based on various building blocks of equities, fixed income securities, and

commodities. Details on each building block follow.

We consider three equity building blocks. The first building block uses the widely used

and readily accessible S&P500 total return index. The second is a fully collateralized portfolio
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of equity index futures that integrates the five signals that are pervasive across futures classes,

namely carry, momentum, value, skewness, and liquidity. The method employed to form

(integrate) these signals is the same as the one presented in Section 2.1.2 (Section 2.1.1).

The total returns of the equity-based integrated portfolio are measured net of transaction

costs using Equation (4). The third equity building block equally weights and rebalances on

a monthly basis equity risk premia based on the market, size, book-to-market value, past

performance, operating profitability, and investment (Fama and French, 1993; Carhart, 1997;

Fama and French, 2015). The second and third equity building blocks are considered either

in a long-only or a long-short setting.

We consider two fixed income building blocks: the widely used and readily accessible

Barclays US Aggregate Bond Index and a style-integrated and fully collateralized portfolio

of fixed income and interest rate futures. The latter portfolio, formed using the method

of Section 2.1.1, combines the carry, momentum, value, skewness, and liquidity signals in

a long-only or a long-short setting (Fernandez-Perez et al., 2019) and assumes round-trip

transaction costs of 8.6 b.p., as in Equation (4).

Finally, we consider two types of commodity building blocks. The first set naively as-

sumes long-only positions as proxied by the S&P-GSCI or a long-only, equally-weighted and

monthly-rebalanced portfolio of commodity futures, hereafter referred to as the average port-

folio (AVG). The second set uses the integrated approach of Section 2.1.1 in a long-only or

a long-short setting and takes into account the eight signals detailed in Section 2.1.2. The

excess returns of the AVG, LO-IRP commodity portfolio and LS-IRP commodity portfolio

are measured net of transaction costs.

The use of futures contracts for the style-integrated building blocks naturally follows from

considerations such as their high liquidity, low transaction cost, and absence of short-selling

restrictions. Moreover, given the cost of carry model, futures positions can be considered as

good substitutes to spot positions in the absence of arbitrage.
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2.3. Portfolio construction

How much wealth should we allocate to these J building blocks, where J = 2 for the

traditional portfolio made of stocks and bonds and J = 3 for the diversified portfolio that

also treats commodities as part of the strategic mix? We use three methods of portfolio

construction: equally-weighted (EW), optimization-based (OB), and volatility timing (VT).6

2.3.1 Equally-weighted portfolio

At the beginning of each month t, portfolio weights are naively assumed to be the same

across assets; i.e., Xt = ( 1
J
, . . . , 1

J
)′. The weights do not depend on any parameter aside from

the number of asset classes. The approach is appealing for many reasons: It is very simple

to implement, is free from estimation errors (since there is no parameter to estimate), and

does not suffer from perfect foresight bias (since we do not assume that the past performance

or past volatility of a given building block at time t will repeat itself at time t+ 1). Equal-

weighting schemes have been shown to improve the robustness of out-of-sample results in

various contexts, such as asset allocation (DeMiguel et al., 2009), forecasts combination

(Rapach et al., 2010), or style integration (Fernandez-Perez et al., 2019).

2.3.2 Optimization-based portfolio

The weights assigned to the J building blocks at time t, xj,t for j = 1, . . . , J , are estimated

by maximizing the conditional expected power utility of the portfolio’s total returns at time

t+ 1. Mathematically, we have

max
xj,t

Et [U(RP,t+1)] = max
xj,t

Et

[
U

(
J∑
j=1

xj,tRj,t+1

)]
= max

xj,t
Et


(

1 +
∑J

j=1 xj,tRj,t+1

)1−γ
− 1

1− γ


(5)

6The main conclusion from the paper is that the average increases in Sharpe ratios obtained when
adding the commodity LO or LS-IRP portfolio to the traditional strategic mix are substantial (at 27.6% and
61.9%, respectively). It is unlikely that these sizeable rises in performance will be wiped off by the costs of
rebalancing the building blocks, and thus we assume that these transaction costs can be ignored.

13



where RP,t+1 is the total return of the traditional (or diversified) portfolio at time t + 1,

Rj,t is the total return of building block j at time t, and γ is the coefficient of relative risk

aversion that we set equal to γ = 3.7 We impose the following constraints:
∑J

j=1 xj,t = 1,

0 ≤ xE,t ≤ 0.6, 0 ≤ xFI,t ≤ 0.4, and 0 ≤ xC,t ≤ 0.3, where E, FI, and C stand for the equity,

fixed income, and commodity building blocks, respectively. The first constraint ensures full

collateralization; the others are there to avoid corner solutions defined as close-to-boundary

weights (Black and Litterman, 1992). These constraints enhance diversification (Grauer and

Shen, 2000), reduce estimation errors (Frost and Savarino, 1988), and reflect the operational

boundaries under which asset managers operate in practice.

The strategic mix of the traditional and diversified portfolios are obtained on an out-of-

sample basis. We use a moving window of 60 months to estimate the optimal allocation to

the building blocks and capture the performance of the traditional and diversified portfolios

over the following month. The estimation window is then moved forward by one month and

the portfolio formation process is then repeated.

2.3.3 Volatility timing portfolio

Portfolio allocation methods based on utility optimization suffer from a range of issues in-

cluding extreme weights, high turnover, and poor out-of-sample performance (Jagannathan

and Ma, 2003; Michaud, 2008; Kirby and Ostdiek, 2012; Low et al., 2016). Following, for

example, Kirby and Ostdiek (2012) or Bessler and Wolff (2015), we weight each building

block in an inverse relationship to the one-year variance of its daily returns. The volatility

7We use a power utility function because it satisfies standard investors’ preferences (monotonicity and
risk-aversion) and allows for the distribution of building block returns to depart from normality. We obtained
similar conclusions on the benefits of diversification from the use of other utility functions, including negative
exponential and power utility with disappointment aversion, or from assuming higher levels of risk aversion
γ = {5, 10}.
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timing (VT) weight for building block j at time t, xj,t, is given by

xj,t =
1/σ2

j,t∑J
j=1 1/σ2

j,t

(6)

where σj,t is the volatility of the daily total return of building block j over the previous year.

The allocations to the building blocks measured at t are used to form the VT portfolio for

a month. The process is reiterated using rolling windows until the sample ends.

2.4. Measuring the diversification benefits of commodity exposure

2.4.1 Comparison of performance and risk profiles

A direct and simple way to assess the value of commodities in multi-asset portfolios is by

comparing the performance and risk profile of traditional portfolios (i.e., constructed from

equity and fixed income) with those of diversified portfolios (i.e., constructed by augmenting

traditional portfolios with commodity exposures). Performance and risk profiles are mea-

sured and compared using various statistical metrics such as annualized mean, annualized

volatility, skewness, and excess kurtosis of excess returns as calculated from standard math-

ematical formulas. Portfolio metrics include downside volatility (measured as annualized

volatility of negative excess returns), 99% Cornish-Fisher Value-at-Risk (defined as maxi-

mum expected loss of the portfolio with 99% confidence after accounting for the third and

fourth moments of the distribution of its returns), the percentage of months with positive ex-

cess returns, the portfolio’s maximum drawdown, Sharpe ratio (defined as annualized mean

excess return to annualized total volatility), Sortino ratio (defined as annualized mean excess

return to annualized downside volatility), and Omega ratio (defined as probability of gains

to probability of losses).

In line with DeMiguel et al. (2009), we test whether the Sharpe ratios of the diversi-

fied portfolios that include commodities are statistically different from their no-commodity

counterparts using the approach of Jobson and Korkie (1981) after applying the correction
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of Memmel (2003). Specifically, given portfolios a and b, with their estimated means, vari-

ances, and covariances over a sample size T represented by µa, µb, σa, σb, σa,b, the hypothesis

H0 : µa/σa− µb/σb = 0 is tested via the asymptotically normally distributed test statistic z:

z =
σbµa − σaµb√

ν
,

ν =
1

T
(2σ2

aσ
2
b − 2σaσbσa,b +

1

2
µ2
aσ

2
b +

1

2
µ2
bσ

2
a −

µaµb
σaσb

σa,b)

(7)

Following Gao and Nardari (2018), we utilize the CRRA utility-based certainty equivalent

excess return (CEQ) to further evaluate the performance of the diversified portfolios. CEQ is

defined as the riskless return an investor with a CRRA utility preference is willing to accept

to forgo the uncertain returns of a given strategy.8 Specifically, let Ū1:T (Wt) be the average

realized CRRA utility for period t = 1 · · ·T . Certainty equivalent excess return is given by:

CEQ1:T = [(1− γ)Ū1:T (Wt)]
1

1−γ − 1, (8)

where Wt is investor’s wealth at time t. Without loss of generality, we normalize initial

wealth to 1, so we have Wt = 1 +Rt, where Rt is the strategy’s excess return between t− 1

and t.

To further evaluate if commodities add value to a traditional portfolio, we regress the

excess returns of the diversified portfolio that includes commodities rD,t onto the excess

returns of the corresponding traditional portfolio that excludes commodities rT,t. Formally

rD,t = α + βrT,t + ε1,t (9)

where ε1,t is a time t error term. A failure to reject the null hypothesis H0 : α = 0 will lead

to the conclusion that the addition of commodities does not provide any incremental benefit

8CEQ is a useful performance measure, since it does not suffer from the shortcomings of other measures,
such as Sharpe ratio, which can lead to misleading conclusions once the underlying assumptions of identically
and normally distributed returns are violated.
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to the traditional portfolio. Conversely, a positive and significant α will be interpreted as an

excess return that is linked to the introduction of commodities and earned over and above

that of the traditional asset mix.

2.4.2 Conditional correlation

There has been ample evidence of heightened correlation among securities and asset classes

during times of increased volatility and market downturns.9 This feature is concerning, as

it is precisely during periods of increased equity volatility that investors need the benefits

of diversification the most. We study whether the benefits of diversification, in terms of

higher time-varying correlations between the traditional and commodity building blocks, are

jeopardized when the volatility of traditional assets rises. Appendix A details the methods

employed to measure conditional volatilities and conditional correlations as estimated via

the generalized autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev

(1986) and the dynamic conditional correlation (DCC) model of Engle (2002), respectively.

We analyze the relationship between the conditional correlations between the traditional

and commodity building blocks (i and j) and the conditional volatilities of the traditional

building block i by estimating the following regression via OLS:

ρij,t = β0 + β1
√
hi,t + ε2,t (10)

where ρij,t is the time t conditional return correlation between asset classes i and j,
√
hi,t is

the time t conditional volatility of asset class i, and ε2,t is a time t error term. A positive

and statistically significant β1 coefficient signifies rising correlations in periods of increased

volatility in traditional asset markets, and thus potentially lower diversification benefits.

Conversely, a negative and statistically significant β1 coefficient indicates lower correlations

during market downturns. This latter case would be welcome news because the benefits of

9See Longin and Solnik (1995), Ang and Chen (2002), or Low et al. (2013).
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diversification are most needed at such times.

3. Data and sampling

3.1. Commodity futures contracts

The commodities dataset, sourced from Refinitiv Datastream, covers 28 commodity futures.

These comprise five metal futures (copper, gold, palladium, platinum, silver), four livestock

futures (feeder cattle, frozen pork bellies, lean hogs, live cattle), six energy futures (elec-

tricity, gasoline, heating oil, light sweet crude oil, natural gas, unleaded gasoline), and 12

agricultural futures (cocoa, coffee, corn, cotton, frozen concentrated orange juice, oats, rough

rice, soybeans, soybean meal, soybean oil, sugar number 11, wheat), alongside futures on

lumber.

To alleviate liquidity issues, all price-based signals and simple excess returns10 are based

on front-end settlement prices except in maturity months, when next-nearest prices are used

instead. When second-end futures prices are needed, the rolling to third contracts is timed so

that it matches the rolling of front contracts. The hedging pressure signal is calculated using

the open interest of large commercial traders (hedgers), as published in the Commitment

of Traders’ (COT) report by the Commodity Futures Trading Commission. All series are

sampled at a daily frequency except for the open interests of hedgers, which are weekly.

Given the availability of COT data, the portfolio construction, and the signals definition

mentioned in Section 2, the out-of-sample sample that is common to all portfolios spans the

period from October 1998 to December 2018. The full sample period starts 10 years, as we

need an initial five year period of data to form the value signal and a subsequent five year

period of data to obtain the first out-of-sample optimized weights (see Equation (5)).

10Excess of the risk-free rate on fully collateralized positions.
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3.2. Traditional assets

All returns for traditional assets are calculated as simple returns. The total returns of the

S&P500 index and Barclays US Aggregate Bond index are obtained from Refinitiv Datas-

tream and Bloomberg, respectively. We download from Refinitiv Datastream the data re-

quired to form integrated portfolios of stock index futures and fixed income and interest

rate futures. Appendix B provides details on the underlying assets. The rolling from one

contract to the next follows the same approach as that employed for commodities.

The total returns of long-only size, value, winner, operating profitability and conservative

investment portfolios and the total returns of long-short size (SMB, Small-Minus-Big), value

(HML, High-Minus-Low), momentum (WML, Winner-Minus-Loser), profitability (RMW,

Robust-Minus-Weak) and investment (CMA, Conservative-Minus-Aggressive) portfolios are

downloaded from Kenneth French’s website. To form the corresponding long-only (long-

short) equity building block, we equally weight and monthly rebalance the long-only (long-

short) size, value, momentum, profitability and investment portfolios. This approach has

been adopted to ensure that we consistently have one equity building block in the various

traditional and diversified portfolios that we consider. The resulting long-only and long-short

characteristic-sorted portfolios are denoted hereafter as LO-FF and LS-FF, respectively, in

reference to the seminal contributions of Fama and French.

4. Empirical results

4.1. Performance and risk of the building blocks

Table 1 reports summary statistics of the excess returns of the equity, fixed income, and

commodity building blocks over a period spanning from October 1998 to December 2018. The

table highlights the good performance of long-only and long-short equity and fixed income

portfolios. The noteworthy portfolios are the long-only FF portfolio and Barclays bond

index, whose Sharpe ratios are at 0.60 and 0.75, respectively. The other traditional portfolios
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present weaker performance, but we consider them nonetheless, as our objective here is not

to implement profitable investment strategies but rather to study the diversification benefits

obtained when adding style-integrated commodity portfolios to a given traditional asset mix.

The right-hand side of Table 1 confirms the conclusion of Fernandez-Perez et al. (2019)

regarding the performance of the long-short integrated risk premia portfolio (LS-IRP) com-

modity portfolio: It presents a positive and statistically significant mean excess return (9.05%

a year with a t-statistic of 3.66), low volatility compared to equity and other commodity

portfolios (at 9% a year) and the highest Sharpe (1.02), Sortino (2.25), and Omega (2.22)

ratios. These properties make the LS-IRP portfolio a worthy candidate for addition to the

traditional portfolios. The long-only integrated risk premia portfolio (LO-IRP) commodity

portfolio also performs well with an annualized mean excess return of 11.15% (t-statistic of

2.44), but its volatility is twice that of the LS-IRP commodity portfolio and, as a result, its

Sharpe ratio is noticeably lower (0.63).

Table 1: Summary statistics of the building block portfolios
The table reports summary statistics for LO (long-only) and LS (long-short) portfolios. IRP corresponds
to the integrated risk premium portfolio. FF refers to the characteristic-sorted portfolios of Carhart (1997)
and Fama and French (2015). AVG is a long-only equally-weighted and monthly-rebalanced portfolio of
commodity futures. Mean is the annualized average return in excess of the risk-free rate. Volatility and
downside volatility are annualized. JB p-value refers to the p-value of the Jarque-Bera normality test with the
null hypothesis that the sample comes from a normal distribution. VaR is the monthly Cornish-Fisher Value-
at-Risk. Sharpe (Sortino) ratios are annualized mean excess return over annualized volatility (annualized
downside volatility using 0% as the threshold). Omega ratios are the probability of gains divided by the
probability of losses using 0% as the threshold. Bold fonts denote significance at the 5% level or better.
t-statistics are in parentheses. The sample spans the period from October 1993 to December 2018.

Equity Fixed income Commodities

S&P 500 LO IRP LS IRP LO FF LS FF Barclays LO IRP LS IRP S&P GSCI AVG LO IRP LS IRP

Mean 0.0740 0.0765 0.0632 0.0934 0.0068 0.0262 0.0292 0.0093 -0.0029 0.0215 0.1115 0.0905
(2.01) (2.21) (1.85) (2.46) (0.50) (2.80) (2.10) (1.56) (-0.06) (0.79) (2.44) (3.66)

Volatility 0.14 0.15 0.14 0.15 0.05 0.04 0.06 0.03 0.21 0.12 0.18 0.09
Downside volatility 0.11 0.10 0.11 0.12 0.04 0.02 0.05 0.02 0.15 0.09 0.10 0.04
Skewness -0.70 0.07 -0.37 -0.75 0.53 -0.19 -0.23 -0.42 -0.33 -0.44 0.65 0.90

(-4.94) (0.50) (-2.60) (-5.33) (3.77) (-1.33) (-1.64) (-2.98) (-2.35) (-3.12) (4.64) (6.37)
Ex. kurtosis 1.28 1.91 6.69 1.35 6.49 0.93 2.79 2.53 1.28 2.83 3.80 2.92

(4.55) (6.77) (23.77) (4.79) (23.04) (3.30) (9.93) (8.98) (4.56) (10.04) (13.52) (10.38)
JB p.value 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
99%VaR (Cornish-Fisher) -0.09 -0.13 -0.15 -0.09 -0.06 -0.03 -0.05 -0.02 -0.14 -0.09 -0.19 -0.09
% of positive months 0.64 0.58 0.59 0.62 0.47 0.61 0.56 0.52 0.53 0.53 0.58 0.60
Max drawdown 0.26 0.32 0.39 0.27 0.13 0.07 0.13 0.06 0.45 0.29 0.38 0.20
Sharpe ratio 0.51 0.51 0.46 0.60 0.13 0.75 0.47 0.32 -0.01 0.18 0.63 1.02
Sortino ratio (0%) 0.68 0.80 0.56 0.80 0.19 1.15 0.63 0.43 -0.02 0.25 1.09 2.25
Omega ratio (0%) 1.47 1.47 1.52 1.55 1.12 1.74 1.49 1.30 0.99 1.15 1.64 2.22

To get a sense of the diversification benefits of adding commodities to a traditional asset
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mix, Panel A of Table 2 presents unconditional return correlations between i) the equity and

fixed income building blocks and ii) the commodity building blocks. The table shows that

the unconditional correlations range from -0.11 to 0.34 over the sample analysed, with an

average at 0.08. This result confirms the wisdom that commodities serve as a diversification

tool to traditional assets (Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). The

evidence is stronger for the LS-IRP commodity portfolio, whose correlations with equity

portfolios are statistically indistinguishable from zero. Other things being equal, the LS-IRP

commodity portfolio is therefore potentially better suited than the long-only commodity

portfolios at diversifying equity risk. All the returns correlations with the Barclays bond

index are statistically insignificant; thus, none of the commodity portfolios stands out as a

better diversifier of the risks present in the bond market.

Panel B of Table 2 analyses the relationship between conditional correlations and the

conditional volatilities of traditional assets and reports estimates of the slope coefficient,

β1, of Equation (10). Studying the conditional correlations with long-only equity portfolios

(the S&P-500 index, equity-based LO-IRP portfolio, long-only FF portfolio), we note that

the S&P-GSCI, AVG portfolio and LO-IRP commodity portfolio exhibit large β1 estimates

that are often positive at the 5% level or better and that average 1.44 across regressions.

In other words, increases in equity volatility go hand-in-hand with increases in correlation.

In periods of heightened volatility in equity markets (known as “risk-off environments”), a

flight to quality takes place, such that asset managers then shift their strategic allocation

away from risky assets (equities, long-only commodity futures) and toward low-risk assets

(fixed income securities). These selling pressures lead to drops in both equity and commodity

prices and therefore to an increase in their conditional correlations.

In sharp contrast, the slope coefficient β1 obtained for the LS-IRP commodity portfolio

vis-à-vis the volatility of long-only equity indices is equal to zero in statistical terms. This

suggests that the LS-IRP commodity portfolio exhibits the same level of diversification re-
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Table 2: Correlation analysis
Panel A reports unconditional return correlations between traditional and commodity building blocks, where
the traditional building blocks are made of either equities or fixed income securities. p-value is for the null that
the correlation is zero. Panel B presents slope coefficients obtained from regressions of conditional correlations
between traditional and commodity building blocks onto the conditional volatilities of traditional building
blocks. t-statistics in parentheses are adjusted for heteroskedasticity and autocorrelation by the Newey and
West (1987) method with 12 lags. IRP corresponds to the integrated risk premium portfolio. FF refers to the
characteristic-sorted portfolios of Carhart (1997) and Fama and French (2015). LO and LS stand for long-
only and long-short portfolios, respectively. AVG is a long-only equally-weighted and monthly-rebalanced
portfolio of commodity futures. The sample spans the period from October 1993 to December 2018.

Commodity building blocks

S&P GSCI AVG LO IRP LS IRP

Correlation p-value Correlation p-value Correlation p-value Correlation p-value

Panel A: Unconditional correlation with commodity building blocks
Equity building blocks

S&P P5500 0.26 0.00 0.34 0.00 0.23 0.00 -0.01 0.86
LO IRP 0.16 0.01 0.22 0.00 0.17 0.00 0.02 0.79
LS IRP 0.12 0.05 0.16 0.01 0.12 0.03 0.02 0.75
LO FF 0.31 0.00 0.34 0.00 0.24 0.00 0.00 0.96
LS FF 0.00 0.96 -0.11 0.07 -0.09 0.12 -0.03 0.64

Fixed income building blocks
Barclays -0.02 0.71 0.03 0.55 0.03 0.63 -0.03 0.58
LO IRP -0.05 0.37 -0.04 0.52 -0.00 0.95 -0.00 0.96
LS IRP 0.01 0.87 0.01 0.84 0.04 0.51 0.01 0.84

β t-stat β t-stat β t-stat β t-stat

Panel B: Conditional correlation with commodity building blocks
Equity building blocks

S&P 500 3.78 (1.60) 1.98 (2.17) 2.69 (2.04) 0.01 (0.28)
LO IRP -0.00 (-0.46) -2.22 (-1.14) 0.00 (0.23) 0.00 (0.78)
LS IRP 0.69 (4.27) 0.63 (3.98) 0.66 (4.03) 0.25 (4.15)
LO FF 2.08 (2.78) 1.86 (2.27) 2.75 (2.79) 0.04 (1.06)
LS IRP 0.05 (0.17) -0.00 (-0.49) -0.71 (-0.50) 1.20 (0.80)

Fixed income building blocks
Barclays 0.41 (1.68) 12.35 (1.57) 7.72 (0.81) 1.69 (0.27)
LO IRP 7.98 (2.07) 3.06 (1.61) 2.96 (0.83) 0.16 (0.21)
LS IRP 3.52 (1.19) 0.20 (0.05) -2.44 (-0.32) -1.34 (-0.37)

gardless of the state of the equity market. This attribute is desirable because it indicates

that investors get diversification in the form of low conditional correlations during equity

market downturns; namely, when they need it most. The low correlations come from the

profits earned on the short leg of the commodity portfolio during commodity market down-

turns and the partial hedge that these profits provide against the losses on the long leg. As a

result, the performance of the LS-IRP commodity portfolio is stable when that of long-only

equity indices drops and, consequently, as reported in Panel B of Table 2, the conditional

return correlations between the two asset classes do not change in risk-off environments.
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Finally, Panel B of Table 2 studies the conditional correlations with fixed income port-

folios. Irrespective of the commodity portfolio considered, the β1 estimates are mostly in-

significant, suggesting that the diversification benefits of commodities are the same in calm

and turbulent fixed income markets.

4.2. Comparing the risk and performance of traditional and diversified portfolios

Do the added performance of the LO-IRP and LS-IRP commodity portfolios (relative to the

S&P-GSCI or the AVG portfolio) and the low correlations between the LS-IRP commod-

ity portfolio and equities convert into better out-of-sample performance for the diversified

portfolio? To answer this question, we measure the performance and risks of five portfolios.

The first one allocates wealth solely to equities and fixed income securities, the other four

portfolios add commodities to the traditional asset mix via either the S&P-GSCI, the AVG

commodity portfolio, the LO-IRP commodity portfolio, or the LS-IRP commodity portfolio.

As detailed in Section 2.2, we consider various traditional building blocks: i) the S&P-500

index and Barclays bond index in Table 3, ii) the integrated portfolios of stock index and

fixed income futures in Table 4 and iii) the characteristic-sorted equity portfolios of Carhart

(1997) and Fama and French (2015) and the Barclays bond index in Table 5. In each of the

three tables, the asset allocation to the building blocks is based on equal weights in Panel

A, optimized weights in Panel B, and volatility-timed weights in Panel C.
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Table 3: Risk and performance of traditional (S&P-500 and Barclays bond index) and diver-
sified portfolios
The table reports summary statistics for traditional portfolios made of equities (S&P-500 index) and fixed
income securities (Barclays bond index), as well as diversified portfolios that add to the traditional asset mix
any one of the following four commodity portfolios: the S&P-GSCI, AVG (a long-only equally-weighted and
monthly-rebalanced portfolio of commodity futures), LO-IRP (a long-only integrated risk premium portfo-
lio), or LS-IRP (a long-short integrated risk premium portfolio). The allocation to the equity, fixed income,
and commodity building blocks is based on equal weights in Panel A, on optimised weights in Panel B , and
on volatility-timed weights in Panel C. Mean is the annualized average return in excess of the risk-free rate.
Certainty equivalent, volatility, and downside volatility are annualized. VaR is the monthly Cornish-Fisher
Value-at-Risk. Sharpe (Sortino) ratios are annualized mean excess return over annualized volatility (annu-
alized downside volatility using 0% as the threshold). Omega ratios are the probability of gains divided by
the probability of losses using 0% as the threshold. Bold fonts denote significance at the 5% level or better.
t-statistics are in parentheses. p-value stands for the p-value associated with the null hypothesis that the
Sharpe ratio of the traditional portfolio equals that of the diversified portfolio. The sample spans the period
from October 1998 to December 2018.

Traditional portfolio Diversified portfolios

Equity & Fixed income S&P GSCI AVG LO IRP LS IRP

Panel A: Equal allocation to building blocks
Mean 0.0419 0.0352 0.0359 0.0668 0.0595

(1.87) (1.18) (1.59) (2.27) (2.67)
Cert. Equiv. 0.0336 0.0198 0.0272 0.0551 0.0544

(2.07) (0.89) (1.62) (2.83) (4.22)
Volatility 0.07 0.10 0.08 0.09 0.06
Downside volatility 0.05 0.08 0.06 0.06 0.04
Skewness -0.66 -0.86 -0.96 -0.39 -0.25

(-4.18) (-5.49) (-6.11) (-2.45) (-1.56)
Ex. kurtosis 1.81 3.75 4.33 2.47 0.83

(5.77) (11.92) (13.78) (7.86) (2.65)
99% VaR (Cornish-Fisher) -0.05 -0.07 -0.05 -0.07 -0.05
% of positive months 0.65 0.63 0.63 0.63 0.66
Max drawdown 0.15 0.24 0.17 0.17 0.11
Sharpe ratio 0.57 0.35 0.48 0.76 1.02
p-value 0.23 0.45 0.24 0.00
Sortino ratio 0.77 0.45 0.59 1.09 1.55
Omega ratio 1.83 1.50 1.74 2.06 2.73

Panel B: Optimized allocation to building blocks
Mean 0.0449 0.0499 0.0383 0.0653 0.0572

(1.73) (1.59) (1.48) (2.00) (2.21)
Cert. Equiv. 0.0331 0.0338 0.0265 0.0500 0.0485

(1.71) (1.51) (1.38) (2.26) (2.90)
Volatility 0.09 0.10 0.09 0.10 0.08
Downside volatility 0.06 0.09 0.07 0.08 0.06
Skewness -0.63 -1.41 -1.21 -0.65 -0.52

(-4.00) (-8.95) (-7.73) (-4.12) (-3.29)
Ex. kurtosis 1.54 7.72 5.14 2.90 2.13

(4.89) (24.56) (16.37) (9.22) (6.78)
99% VaR (Cornish-Fisher) -0.06 -0.07 -0.06 -0.08 -0.06
% of positive months 0.65 0.64 0.63 0.65 0.67
Max drawdown 0.17 0.28 0.21 0.21 0.15
Sharpe ratio 0.51 0.50 0.44 0.66 0.76
p-value 0.91 0.47 0.34 0.05
Sortino ratio 0.69 0.57 0.53 0.86 0.97
Omega ratio 1.71 1.69 1.64 1.88 2.19

Panel C: Volatility timing allocation to building blocks
Mean 0.0280 0.0286 0.0299 0.0328 0.0381

(2.19) (2.19) (2.25) (2.37) (2.60)
Cert. Equiv. 0.0263 0.0269 0.0283 0.0312 0.0366

(3.59) (3.68) (3.93) (4.27) (5.23)
Volatility 0.03 0.03 0.03 0.03 0.03
Downside volatility 0.02 0.03 0.03 0.03 0.02
Skewness -0.62 -0.74 -0.72 -0.65 -0.28

(-3.96) (-4.74) (-4.59) (-4.16) (-1.78)
Ex. kurtosis 1.81 2.19 2.54 2.20 1.91

(5.76) (6.97) (8.07) (7.01) (6.07)
99% VaR (Cornish-Fisher) -0.02 -0.02 -0.02 -0.03 -0.03
% of positive months 0.69 0.71 0.70 0.72 0.73
Max drawdown 0.06 0.06 0.06 0.06 0.06
Sharpe ratio 0.85 0.87 0.92 1.00 1.21
p-value 0.58 0.33 0.00 0.00
Sortino ratio 1.15 1.12 1.17 1.30 1.69
Omega ratio 2.75 2.81 3.02 3.13 3.82
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Table 4: Risk and performance of traditional and diversified portfolios of integrated risk pre-
mia
The table reports summary statistics for traditional portfolios made of integrated risk premium (IRP) port-
folios of either stock index futures or fixed income and interest rate futures, as well as diversified portfolios
that add to the traditional asset mix any one of the following four commodity portfolios: the S&P-GSCI,
AVG (a long-only equally-weighted and monthly-rebalanced portfolio of commodity futures), LO-IRP (a
long-only integrated risk premium portfolio), or LS-IRP (a long-short integrated risk premium portfolio).
The traditional building blocks are IRP portfolios that are either long-only (left-hand side) or long-short
(right-hand side). The allocation to the equity, fixed income, and commodity building blocks is based on
equal weights in Panel A, on optimised weights in Panel B, and on volatility-timed weights in Panel C. Mean
is the annualized average return in excess of the risk-free rate. Certainty equivalent, volatility, and downside
volatility are annualized. Sharpe (Sortino) ratios are annualized mean excess return over annualized volatility
(annualized downside volatility using 0% as the threshold). Omega ratios are the probability of gains divided
by the probability of losses using 0% as the threshold. VaR is the monthly Cornish-Fisher Value-at-Risk.
Bold fonts denote significance at the 5% level or better. t-statistics are in parentheses. p-value stands for
the p-value associated with the null hypothesis that the Sharpe ratio of the traditional portfolio equals that
of the diversified portfolio. The sample spans the period from October 1998 to December 2018.

Long-only allocation to equity and fixed income Long-short allocation to equity and fixed income
IRP portfolios IRP portfolios

Traditional Diversified Traditional Diversified

S&P GSCI AVG LO IRP LS IRP S&P GSCI AVG LO IRP LS IRP

Panel A: Equal allocation to Building Blocks
Mean 0.0514 0.0416 0.0423 0.0731 0.0658 0.0465 0.0383 0.0390 0.0698 0.0625

(2.27) (1.42) (1.95) (2.46) (2.76) (2.01) (1.31) (1.74) (2.31) (2.67)
Cert. Equiv. 0.0425 0.0278 0.0344 0.0621 0.0603 0.0380 0.0244 0.0314 0.0589 0.0572

(2.46) (1.30) (2.14) (3.24) (4.41) (2.29) (1.14) (2.00) (3.12) (4.33)
Volatility 0.08 0.10 0.07 0.09 0.06 0.07 0.10 0.07 0.08 0.06
Downside volatility 0.04 0.06 0.05 0.05 0.03 0.06 0.07 0.06 0.06 0.05
Skewness 0.41 -0.02 -0.15 0.10 0.44 -0.47 -0.50 -0.64 -0.39 -0.65

(2.61) (-0.15) (-0.99) (0.62) (2.82) (-3.01) (-3.20) (-4.06) (-2.50) (-4.12)
Ex. kurtosis 2.04 0.55 0.64 0.67 1.18 4.59 0.65 3.69 1.81 3.04

(6.49) (1.74) (2.02) (2.12) (3.77) (14.61) (2.06) (11.74) (5.77) (9.66)
99% VaR (Cornish-Fisher) -0.07 -0.07 -0.05 -0.07 -0.06 -0.07 -0.06 -0.06 -0.07 -0.05
% of positive months 0.63 0.62 0.61 0.64 0.67 0.62 0.62 0.61 0.65 0.70
Max drawdown 0.17 0.17 0.13 0.15 0.11 0.19 0.16 0.16 0.16 0.14
Sharpe ratio 0.66 0.43 0.58 0.85 1.07 0.62 0.40 0.55 0.82 1.05
p-value 0.24 0.58 0.28 0.00 0.26 0.62 0.25 0.00
Sortino ratio 1.16 0.70 0.92 1.49 2.08 0.76 0.58 0.70 1.11 1.28
Omega ratio 1.97 1.58 1.86 2.17 2.83 2.04 1.53 1.89 2.21 2.86

Panel B: Optimized allocation to building blocks
Mean 0.0557 0.0555 0.0448 0.0717 0.0644 0.0538 0.0562 0.0474 0.0777 0.0733

(2.14) (1.97) (1.83) (2.17) (2.34) (1.99) (1.84) (1.71) (2.13) (2.41)
Cert. Equiv. 0.0435 0.0427 0.0342 0.0577 0.0556 0.0416 0.0415 0.0339 0.0597 0.0616

(2.15) (2.07) (1.83) (2.69) (3.25) (2.10) (1.92) (1.64) (2.49) (3.20)
Volatility 0.09 0.09 0.08 0.10 0.08 0.09 0.10 0.09 0.11 0.09
Downside volatility 0.05 0.05 0.05 0.06 0.05 0.07 0.08 0.08 0.09 0.08
Skewness 0.41 0.09 -0.05 0.04 0.13 -0.48 -0.79 -1.04 -0.87 -1.31

(2.59) (0.56) (-0.34) (0.28) (0.85) (-3.08) (-5.03) (-6.64) (-5.51) (-8.32)
Ex. kurtosis 2.03 0.65 0.18 0.47 0.98 5.00 1.95 5.23 3.54 5.55

(6.45) (2.08) (0.58) (1.50) (3.11) (15.92) (6.19) (16.63) (11.28) (17.65)
99% VaR (Cornish-Fisher) -0.09 -0.07 -0.06 -0.08 -0.07 -0.08 -0.06 -0.07 -0.08 -0.06
% of positive months 0.61 0.62 0.59 0.63 0.67 0.63 0.64 0.64 0.66 0.70
Max drawdown 0.20 0.17 0.16 0.16 0.14 0.23 0.18 0.23 0.23 0.19
Sharpe ratio 0.61 0.60 0.53 0.74 0.84 0.60 0.58 0.51 0.72 0.85
p-value 0.94 0.44 0.42 0.07 0.86 0.35 0.41 0.01
Sortino ratio 1.07 1.04 0.89 1.28 1.36 0.72 0.73 0.56 0.82 0.86
Omega ratio 1.84 1.78 1.72 1.97 2.26 1.97 1.77 1.79 2.04 2.39

Panel C: Volatility timing allocation to building blocks
Mean 0.0347 0.0363 0.0364 0.0462 0.0543 0.0124 0.0129 0.0143 0.0156 0.0200

(2.20) (2.11) (2.19) (2.43) (2.65) (1.21) (1.21) (1.33) (1.40) (1.66)
Cert. Equiv. 0.0304 0.0322 0.0328 0.0421 0.0509 0.0112 0.0117 0.0131 0.0144 0.0188

(2.53) (2.72) (2.99) (3.61) (4.74) (1.72) (1.80) (2.05) (2.21) (2.95)
Volatility 0.05 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03
Downside volatility 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
Skewness 0.02 0.15 0.21 0.09 0.32 -0.19 -0.14 -0.03 -0.13 -0.12

(0.15) (0.98) (1.31) (0.56) (2.04) (-1.23) (-0.92) (-0.21) (-0.84) (-0.75)
Ex. kurtosis 2.93 2.58 1.50 2.12 1.81 1.85 1.74 1.32 1.56 1.42

(9.34) (8.21) (4.79) (6.76) (5.77) (5.89) (5.53) (4.19) (4.96) (4.52)
99% VaR (Cornish-Fisher) -0.05 -0.05 -0.04 -0.05 -0.05 -0.02 -0.02 -0.02 -0.02 -0.02
% of positive months 0.64 0.64 0.65 0.64 0.65 0.64 0.65 0.62 0.64 0.65
Max drawdown 0.12 0.12 0.10 0.11 0.10 0.06 0.06 0.06 0.06 0.06
Sharpe ratio 0.64 0.68 0.74 0.88 1.12 0.42 0.44 0.50 0.53 0.70
p-value 0.54 0.43 0.00 0.00 0.53 0.22 0.00 0.00
Sortino ratio 0.92 1.02 1.17 1.35 1.97 0.59 0.63 0.77 0.78 1.06
Omega ratio 2.20 2.27 2.39 2.61 3.28 2.28 2.30 2.40 2.46 2.7825



Table 5: Risk and performance of traditional (characteristic-sorted equity portfolios and Bar-
clays bond index) and diversified portfolios
The table reports summary statistics for traditional portfolios made of characteristic-sorted equity portfolios
and Barclays bond index, as well as diversified portfolios that add to the traditional asset mix any one of
the following four commodity portfolios: the S&P-GSCI, AVG (a long-only equally-weighted and monthly-
rebalanced portfolio of commodity futures), LO-IRP (a long-only integrated risk premium portfolio), or LS-
IRP (a long-short integrated risk premium portfolio). The equity building blocks are characteristic-sorted
portfolios based on Fama and French (2015) and Carhart (1997); they are either long-only (left-hand side)
or long-short (right-hand side). The allocation to the equity, fixed income, and commodity building blocks is
based on equal weights in Panel A, on optimised weights in Panel B, and on volatility-timed weights in Panel
C. Mean is the annualized average return in excess of the risk-free rate. Certainty equivalent, volatility,
and downside volatility are annualized. VaR is the monthly Cornish-Fisher Value-at-Risk. Sharpe (Sortino)
ratios are annualized mean excess return over annualized volatility (annualized downside volatility using 0%
as the threshold). Omega ratios are the probability of gains divided by the probability of losses using 0% as
the threshold. p-value stands for the p-value associated with the null hypothesis that the Sharpe ratio of the
traditional portfolio equals that of the diversified portfolio. Bold fonts denote significance at the 5% level or
better. t-statistics are in parentheses. The sample spans the period from October 1998 to December 2018.

Long-only allocation to Fama French Long-short allocation to Fama French
equity portfolio equity portfolio

Traditional Diversified Traditional Diversified

S&P GSCI AVG LO IRP LS IRP S&P GSCI AVG LO IRP LS IRP

Panel A: Equal allocation to building blocks
Mean 0.0569 0.0453 0.0459 0.0768 0.0695 0.0200 0.0207 0.0213 0.0522 0.0449

(2.27) (1.41) (1.87) (2.41) (2.83) (1.40) (0.83) (1.31) (2.11) (2.44)
Cert. Equiv 0.0472 0.0284 0.0364 0.0642 0.0638 0.0183 0.0114 0.0180 0.0460 0.0428

(2.68) (1.22) (2.08) (3.17) (4.65) (2.41) (0.65) (1.72) (3.16) (5.00)
Volatility 0.08 0.10 0.08 0.09 0.06 0.03 0.08 0.05 0.07 0.04
Downside volatility 0.06 0.08 0.06 0.06 0.04 0.02 0.05 0.03 0.04 0.02
Skewness -0.73 -0.89 -1.03 -0.45 -0.28 0.84 -0.37 -0.34 0.62 0.67

(-4.62) (-5.68) (-6.58) (-2.85) (-1.81) (5.33) (-2.33) (-2.17) (3.93) (4.26)
Ex. kurtosis 1.80 3.55 4.24 2.33 0.97 3.73 0.88 1.81 2.75 1.06

(5.72) (11.28) (13.48) (7.41) (3.07) (11.88) (2.80) (5.77) (8.76) (3.37)
99% VaR (Cornish-Fisher) -0.05 -0.07 -0.05 -0.07 -0.05 -0.04 -0.05 -0.04 -0.07 -0.04
% of positive months 0.68 0.63 0.64 0.66 0.71 0.68 0.58 0.60 0.63 0.67
Max drawdown 0.15 0.25 0.16 0.18 0.12 0.07 0.16 0.10 0.13 0.07
Sharpe ratio 0.72 0.43 0.58 0.84 1.12 0.58 0.26 0.45 0.80 1.17
p-value 0.09 0.27 0.42 0.00 0.23 0.57 0.42 0.00
Sortino ratio 0.97 0.54 0.72 1.19 1.69 0.94 0.39 0.67 1.48 2.63
Omega ratio 1.99 1.58 1.86 2.17 2.86 2.62 1.43 1.88 2.29 3.68

Panel B: Optimized allocation to building blocks
Mean 0.0629 0.0634 0.0534 0.0800 0.0724 0.0186 0.0228 0.0190 0.0513 0.0441

(2.19) (1.87) (1.90) (2.26) (2.55) (1.23) (1.03) (1.12) (2.12) (2.45)
Cert. Equiv 0.0490 0.0444 0.0396 0.0625 0.0621 0.0165 0.0168 0.0156 0.0449 0.0419

(2.33) (1.84) (1.91) (2.64) (3.37) (1.96) (1.19) (1.45) (3.07) (4.75)
Volatility 0.09 0.11 0.09 0.11 0.08 0.04 0.06 0.05 0.07 0.04
Downside volatility 0.07 0.09 0.08 0.08 0.06 0.02 0.05 0.03 0.03 0.02
Skewness -0.70 -1.39 -1.42 -0.78 -0.56 0.88 -0.41 -0.12 0.66 0.58

(-4.44) (-8.86) (-9.05) (-4.98) (-3.56) (5.63) (-2.60) (-0.79) (4.18) (3.72)
Ex. kurtosis 1.48 7.60 6.00 3.58 2.17 4.65 2.83 1.02 2.51 1.19

(4.72) (24.19) (19.09) (11.38) (6.90) (14.79) (9.00) (3.25) (7.99) (3.77)
99% VaR (Cornish-Fisher) -0.06 -0.08 -0.06 -0.08 -0.06 -0.04 -0.05 -0.04 -0.07 -0.04
% of positive months 0.66 0.65 0.64 0.66 0.67 0.64 0.61 0.58 0.63 0.67
Max drawdown 0.18 0.30 0.22 0.24 0.18 0.08 0.15 0.09 0.13 0.07
Sharpe ratio 0.66 0.58 0.57 0.75 0.88 0.49 0.36 0.39 0.78 1.11
p-value 0.51 0.32 0.53 0.07 0.58 0.63 0.29 0.00
Sortino ratio 0.90 0.68 0.68 0.99 1.15 0.76 0.46 0.60 1.52 2.29
Omega ratio 1.86 1.78 1.77 1.99 2.31 2.36 1.69 1.81 2.24 3.48

Panel C: Volatility timing allocation to Building Blocks
Mean 0.0293 0.0299 0.0311 0.0341 0.0394 0.0185 0.0192 0.0206 0.0222 0.0260

(2.24) (2.24) (2.29) (2.41) (2.62) (1.42) (1.46) (1.58) (1.63) (1.86)
Cert. Equiv 0.0277 0.0283 0.0296 0.0325 0.0379 0.0172 0.0179 0.0194 0.0209 0.0248

(3.82) (3.91) (4.14) (4.50) (5.45) (2.55) (2.68) (3.07) (3.18) (3.90)
Volatility 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Downside volatility 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Skewness -0.53 -0.66 -0.64 -0.55 -0.16 -0.02 0.03 0.06 0.01 0.08

(-3.40) (-4.18) (-4.07) (-3.53) (-0.99) (-0.14) (0.16) (0.35) (0.06) (0.49)
Ex. kurtosis 1.77 2.08 2.34 2.10 1.90 1.72 1.71 1.43 1.53 1.20

(5.63) (6.63) (7.44) (6.68) (6.05) (5.48) (5.44) (4.55) (4.86) (3.81)
99% VaR (Cornish-Fisher) -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
% of positive months 0.70 0.71 0.71 0.72 0.73 0.66 0.65 0.67 0.68 0.70
Max drawdown 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Sharpe ratio 0.90 0.92 0.97 1.05 1.26 0.61 0.64 0.72 0.75 0.91
p-value 0.60 0.37 0.00 0.00 0.30 0.08 0.00 0.00
Sortino ratio 1.25 1.21 1.25 1.39 1.81 0.93 0.99 1.14 1.17 1.49
Omega ratio 2.87 2.94 3.15 3.28 4.02 2.54 2.62 2.87 2.86 3.2426



Bringing together the evidence reported in these three tables, it appears that over the

period considered (from October 1998 to December 2018) investors can benefit from adding

well-designed commodity portfolios to their strategic mix. Across tables and panels, the

Sharpe ratio of traditional portfolios made of stocks and bonds drops on average by 15.3%

when adding the S&P-GSCI to the strategic mix and by 5.9% when adding the AVG com-

modity portfolio. In contrast, the average Sharpe ratio rises by 27.6% when adding the

LO-IRP commodity portfolio to the traditional asset mix and by 61.9% when adding the

LS-IRP commodity portfolio. The Sortino and Omega ratios provide a similar picture across

the panels and tables. For example, the Sortino ratio of the traditional asset mix drops on

average by 18.1% and 8.8% when adding the S&P-GSCI and AVG to traditional stock-

bond portfolios and rises by 32.9% and 77.7% when adding instead the LO-IRP and LS-IRP

commodity portfolios, respectively.11 The highest Sharpe and Omega ratios (1.26 and 4.02,

respectively) are obtained when adding the LS-IRP commodity portfolio to a traditional

asset mix made of long-only FF portfolios and Barclays bond index (Table 5, Panel C). The

corresponding ratios for the traditional portfolios that exclude LS-IRP are at 0.9 and 2.87,

respectively.

The conclusion that adding the LS-IRP commodity portfolio to the traditional asset

mix enhances the risk-adjusted performance of stock-bond portfolios holds per panel and

per table, suggesting that the inference is not driven by the choice of traditional asset mix

(across tables) or by the choice of allocation technique (across panels). The rise in risk-

adjusted performance is also often statistically significant: The p-values associated with the

null hypothesis that the Sharpe ratio of the asset mix with LS-IRP equals the Sharpe ratio

of the asset mix without LS-IRP are often less than 5%, indicating that the rise in Sharpe

11Likewise, the Omega ratio of the traditional asset mix drops on average by 11% and 3.6%, when adding
the S&P-GSCI and AVG to traditional stock-bond portfolios and rises by 7.8% and 35.9% when adding
instead the LO-IRP and LS-IRP commodity portfolios, respectively.
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ratio obtained when adding LS-IRP is statistically significant. The evidence is less strong

for the LO-IRP commodity portfolio, for which the change in Sharpe ratios obtained when

adding LO-IRP to stock-bond portfolios is less often statistically significant.

The substantial increases in risk-adjusted performance observed when adding the LS-IRP

commodity portfolio to traditional portfolios made of stocks and bonds are jointly driven by

increases in mean excess returns and decreases in risk levels. For example, adding commodi-

ties to the strategic mix via LO-IRP and LS-IRP, respectively, increases the mean excess

return of the traditional asset mix by 52.1% and 47.4% on average across tables and panels.

Looking now at the risk profiles, the asset mix with the LO-IRP or LS-IRP commodity port-

folio is found to present on average (i.e., across tables and panels) a level of excess kurtosis

that is 1.6% or 23.8% lower, respectively, than the level of excess kurtosis observed for the

traditional asset mix. In sharp contract, adding commodities to the traditional asset mix via

the S&P-GSCI or AVG raises the excess kurtosis of the traditional asset mix by 42.4% and

32.5%, respectively. Likewise, adding to the traditional stock-bond mix the LS-IRP com-

modity portfolio lowers on average the maximum drawdown of the traditional stock-bond

mix by 13.1%. In contrast, adding the S&P-GSCI or AVG to the traditional stock-bond

mix increases the maximum drawdown of the traditional stock-bond mix by 28.1% or 3%,

respectively. These results serve to highlight the benefits in terms of risk profile of treating

the LS-IRP commodity portfolio as part of the strategic mix of investors.

Comparing the risk-adjusted performance of the diversified portfolios across asset allo-

cation strategies (i.e., across the panels), we note that the superiority of the strategic mix

that allocates wealth to the commodity-based LS-IRP portfolio holds, irrespective of the

portfolio allocation methods. Nonetheless, investors seem to be better off allocating wealth

to the various building blocks using equal or volatility-timed weights (Panels A and C). The

relatively worse performance of the diversified strategy based on optimized weights (Panel B)

is somehow expected: Optimized weights are known to yield large estimation errors and poor
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out-of-sample performance (Jagannathan and Ma, 2003; Michaud, 2008; Kirby and Ostdiek,

2012). Imposing upper-bound constraints, as we do, helps to alleviate these issues but does

not eliminate them.

4.3. Allocations over time to the various building blocks

Figure 1 shows the allocation over time to the equity, fixed income, and commodity build-

ing blocks. The rows pertain to the portfolio allocation methods: equal weights (EW),

optimization-based weights (OB), and volatility-timed weights (VT). The columns allow for

different traditional building blocks ranging from the S&P-500 index and Barclays bond

index (left column) to equity and fixed income LS-IRP portfolios (middle column) and to

long-short characteristic-sorted equity portfolios and Barclays bond index (right column).

In all settings, the LS-IRP portfolio is used as the commodity building block. This choice is

governed by our previous results that have shown the superior performance of the diversified

portfolios that make use of LS-IRP.

As expected, the optimization-based (OB) construction method exhibits greater fluctu-

ations in weights across the building blocks, consistent with Black and Litterman (1992)

and Best and Grauer (1991). The practical implementation of such an allocation strategy

is more challenging due to higher transaction costs and implementation constraints. VT,

by definition, constructs allocations that are inversely proportional to the risks of the build-

ing blocks. Consequently, fixed income, with inherently lower volatility, constitutes a larger

portion of the portfolio. The VT approach responds to changes in the underlying data in

an orderly and gradual fashion as opposed to the OB method, whereby weight changes are

more sudden and extreme. This is a highly desirable attribute because it allows for practical

implementation.
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Figure 1: Allocation over time to different asset classes
The figure illustrates the monthly evolution in the weights allocated to the equity, fixed income, and com-
modity building blocks, whereby the constituents of the building blocks are mentioned in the headings of
each column. The allocation to the building blocks is based on equal weights (EW) in Panel A, optimised
weights (OB, optimisation-based allocation) in Panel B, and volatility timing (VT) in Panel C. The sample
spans the period from October 1998 to December 2018.

Equity: S&P 500, Fixed income: Barclays,
Commodities: LS-IRP Equity, Fixed income, Commodities: LS-IRP

Equity: LS Fama French and Carhart, Fixed
income: Barclays, Commodities: LS-IRP
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4.4. Abnormal performance

Another way to test if commodities add value to a traditional portfolio is to carry out the

regression analysis described in Section 2.4.1. Table 6 reports coefficient estimates and Newey

and West (1987) adjusted t-statistics from regressions of the excess returns of a diversified

portfolio onto the excess returns of its corresponding traditional portfolio (Equation (9)). The

results are presented for the different equity, fixed income, and commodity building blocks

considered in our paper (as reported in the various rows of the table) and after allowing for

various allocation methods to these building blocks (equal, optimized, and volatility-timed

weights as reported in Panels A, B, and C, respectively).

When LS-IRP is used as commodity building block, the annualized alphas of the regres-

sions are positive and statistically significant at the 5% level or better, averaging 2.42% a

year with a range from 0.84% (t-statistic of 4.46) to 3.36% (t-statistic of 4.92) across portfo-

lios. When using LO-IRP in place of LS-IRP as a commodity building block, the annualized

alphas equal 2.28% on average and are statistically significant at the 10% level or better for

11 of the 15 portfolios considered. Confirming previous studies, using naive long-only com-

modity portfolios (S&P-GSCI and AVG) as building blocks does not add value to investors:

The alphas are zero economically (average of 0.27% a year) and statistically, suggesting an

absence of diversification benefits. This analysis serves to confirm the superiority of di-

versified portfolios that allocate wealth to long-only and long-short integrated commodity

portfolios.
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4.5. Alternative style-integration approach

The asset pricing literature has identified two ways to combine styles into a unique portfolio.

The first approach is the one-step strategy discussed thus far. The second is based on two

steps that consist of first forming K single-style portfolios and then constructing another

portfolio that allocates equal wealth to these K portfolios. Asset managers who already

manage K single-style portfolios could offer this integrated portfolio to their clients and see

it as a viable alternative to the one-step solution discussed thus far. It remains to be tested

whether the diversification benefits identified with the one-step integration approach persist

in the context of this two-step solution.12

Table 7 reports the results. The first set of columns presents summary statistics for

the commodity-based integrated portfolio based on the two-step approach. The results

are presented in both a long-only (LO) and a long-short (LS) settings. Comparing these

summary statistics to those reported in Table 1, it appears that the one-step integrated

portfolios perform slightly better on a risk-adjusted basis than the corresponding two-step

integrated portfolios. For example, the Sharpe ratio of the LO-IRP portfolio is 0.63 based on

the one-step approach (Table 1) versus 0.43 based on the two-step approach (Table 7). The

corresponding figures for the LS-IRP portfolios are 1.02 for the one-step approach (Table 1)

versus 0.97 for the two-step approach (Table 7).

Next, we study the diversification benefits obtained when adding the two-step integrated

portfolio of commodities to the traditional building blocks. As in Tables 3 to 5, we consider

various sets of traditional building blocks such as i) the S&P-500 and Barclays bond index,

ii) long-only or long-short integrated portfolios of equity and fixed income futures, and

iii) long-only or long-short characteristic-sorted equity portfolios and Barclays bond index.

12The literature on the relative merits of the two integration approaches is inconclusive: Some studies
endorse the one-step integrated portfolio (Bender and Wang, 2016; Fitzgibbons et al., 2017; Clarke et al.,
2018), while other studies suggest that neither of the methods stands out (Fraser-Jenkins et al., 2016;
Leippold and Rueegg, 2018).
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We then add to these traditional portfolios either the LO or the LS two-step integrated

portfolio of commodities, allowing for various allocations to the different building blocks

(equal weights in Panel A, optimized weights in Panel B, and volatility-timed weights in

Panel C). Finally, we compare the performance of the then-obtained diversified portfolios to

that of the previously-reported traditional and diversified portfolios (Tables 3 to 5).

We draw two conclusions. First, investors should consider the two-step integrated port-

folio of commodities, rather than the S&P-GSCI or the AVG portfolio, as part of their

strategic mix, as the risk-adjusted performance is then higher. This conclusion holds for

both the LO and LS two-step integrated portfolios, irrespective of the traditional build-

ing blocks considered or the weighting scheme adopted. All in all, these results serve to

highlight once more the diversification benefits of style integration. Second, the choice be-

tween the one-step or the two-step integration method depends on the allocation chosen for

the various building blocks. Investors who opt for the equal (Panel A) or the optimized

(Panel B) weighting scheme should select the one-step integrated portfolio (rather than its

two-step counterpart), as the risk-adjusted performance of the diversified portfolios is then

higher. However, investors interested in volatility timing (Panel C) should allocate wealth to

the two-step integrated portfolio of commodities, as the then-resulting diversified portfolios

present higher risk-adjusted returns. To understand this extra performance, it is important

to note the low volatility of the two-step integrated portfolio (at 5% in Table 7) relative to

its one-step counterpart (at 9% in Table 1) and to recall that the volatility-timing scheme

assigns (by construction) higher weights to low-volatility portfolios. As a result, the portfo-

lios in Panel C, Table 7 present higher performance as they allocate relatively more weights

to the integrated portfolio of commodities than the portfolios in Panel C of Tables 3 to 5.

34



Table 7: Risk and performance of portfolios using two-step integration approach
The table reports summary statistics for the two-step integrated portfolio of commodities and for the corre-
sponding diversified portfolios. The diversified portfolios include this two-step integrated commodity portfo-
lio as well as the following traditional asset classes: the S&P-500 index and Barclays bond index (under label
(1)), long-only or long-short futures-based equity and fixed income integrated portfolios (under label (2)) and
long-only or long-short characteristic-sorted portfolios of equities and Barclays bond index (under label (3)).
The allocation to the equity, fixed income, and commodity building blocks is based on equal weights in Panel
A, optimised weights in Panel B, and volatility-timed weights in Panel C. Mean is the annualized average
return in excess of the risk-free rate. Volatility and downside volatility are annualized. VaR is the monthly
Cornish-Fisher Value-at-Risk. Sharpe (Sortino) ratios are annualized mean excess return over annualized
volatility (annualized downside volatility using 0% as the threshold). Omega ratios are the probability of
gains divided by the probability of losses using 0% as the threshold. Bold fonts denote significance at the
5% level or better. t-statistics are in parentheses. p-value stands for the p-value associated with the null
hypothesis that the Sharpe ratio of the traditional portfolio equals that of the diversified portfolio. The
sample spans the period from October 1998 to December 2018.

Two-step commodity portfolio Diversified portfolios

(1) (2) (3)

LO LS LO LS LO LS LO LS

Panel A: Equal allocation to building blocks
Mean 0.0635 0.0473 0.0483 0.0440 0.0546 0.0470 0.0583 0.0294

(1.74) (3.62) (1.87) (2.37) (2.13) (2.40) (2.08) (2.03)
Volatility 0.15 0.05 0.08 0.05 0.08 0.05 0.08 0.03
Downside volatility 0.10 0.03 0.06 0.04 0.05 0.04 0.06 0.01
Skewness 0.05 0.65 -0.75 -0.53 -0.05 -0.66 -0.80 0.67

0.41 5.77 -4.78 -3.36 -0.34 -4.23 -5.07 4.28
Ex. kurtosis (2.20) (1.73) (3.31) (1.55) (0.50) (3.96) (3.20) (1.05)

9.74 7.66 10.53 4.94 1.60 12.60 10.20 3.35
99% VaR (Cornish-Fisher) (-0.13) (-0.05) (-0.06) (-0.04) (-0.06) (-0.05) (-0.06) (-0.03)
% of positive months 0.35 0.40 0.63 0.65 0.61 0.70 0.65 0.68
Max drawdown 0.31 0.10 0.17 0.10 0.15 0.13 0.17 0.05
Sharpe ratio 0.43 0.97 0.60 0.85 0.70 0.88 0.70 1.02
p-value 0.82 0.00 0.50 0.26 0.41 0.17
Sortino ratio 0.66 1.87 0.79 1.17 1.16 1.05 0.90 2.33
Omega ratio 1.40 2.15 1.87 2.45 1.99 2.63 1.99 3.69

Panel B: Optimized allocation to building blocks
Mean 0.0635 0.0473 0.0495 0.0404 0.0544 0.0581 0.0632 0.0271

(1.74) (3.62) (1.74) (1.83) (1.92) (2.12) (2.05) (1.96)
Volatility 0.15 0.05 0.09 0.07 0.09 0.08 0.10 0.03
Downside volatility 0.10 0.03 0.07 0.06 0.05 0.08 0.08 0.02
Skewness 0.05 0.65 -1.01 -0.76 0.00 -1.27 -1.17 0.49

0.41 5.77 -6.40 -4.84 0.03 -8.05 -7.46 3.10
Ex. kurtosis (2.20) (1.73) (4.63) (2.93) (0.49) (6.07) (5.59) (1.22)

9.74 7.66 14.72 9.31 1.56 19.31 17.80 3.87
99% VaR (Cornish-Fisher) (-0.13) (-0.05) (-0.06) (-0.05) (-0.07) (-0.06) (-0.07) (-0.03)
% of positive months 0.35 0.40 0.65 0.64 0.63 0.70 0.64 0.65
Max drawdown 0.31 0.10 0.20 0.15 0.16 0.19 0.23 0.06
Sharpe ratio 0.43 0.97 0.56 0.58 0.63 0.70 0.66 0.91
p-value 0.74 0.50 0.52 0.46 0.29 0.24
Sortino ratio 0.66 1.87 0.67 0.70 1.06 0.71 0.80 1.79
Omega ratio 1.40 2.15 1.80 1.92 1.85 2.19 1.91 3.32

Panel C: Volatility timing allocation to building blocks
Mean 0.0635 0.0473 0.0316 0.0354 0.0424 0.0206 0.0329 0.0254

(1.74) (3.62) (2.33) (2.53) (2.33) (1.71) (2.37) (1.90)
Volatility 0.15 0.05 0.03 0.03 0.05 0.03 0.03 0.03
Downside volatility 0.10 0.03 0.03 0.02 0.03 0.02 0.02 0.01
Skewness 0.05 0.65 -0.70 -0.09 0.13 -0.02 -0.60 0.14

0.41 5.77 -4.42 -0.57 0.83 -0.11 -3.79 0.91
Ex. kurtosis (2.20) (1.73) (2.35) (1.75) (1.88) (0.91) (2.22) (0.77)
tstat 9.74 7.66 7.48 5.57 5.97 2.91 7.05 2.46
99% VaR (Cornish-Fisher) (-0.13) (-0.05) (-0.02) (-0.03) (-0.05) (-0.02) (-0.03) (-0.02)
% of positive months 0.35 0.40 0.72 0.72 0.64 0.65 0.73 0.70
Max drawdown 0.31 0.10 0.06 0.05 0.11 0.06 0.06 0.05
Sharpe ratio 0.43 0.97 0.97 1.24 0.82 0.78 1.02 0.97
p-value 0.03 0.00 0.94 0.88 0.01 0.49
Sortino ratio 0.66 1.87 1.24 1.87 1.30 1.30 1.33 1.75
Omega ratio 1.40 2.15 3.09 4.12 2.51 3.00 3.23 3.53
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4.6. Are the results sample-specific?

To address this question, we re-evaluate the performance of the traditional and diversified

portfolios over different sub-periods such as i) the periods pre and post the financialization

of commodity futures dated January 2006 (Stoll and Whaley, 2010), ii) periods of high and

low volatility in commodity futures markets,13 and iii) periods of expansion or recession

as defined by the National Bureau of Economic Research. In each of the subperiods, we

measure the Sharpe ratios of the traditional portfolios made of the S&P-500 and Barclays

bond index and compare them to those of a diversified version thereof that includes any one

of the following four commodity portfolios: the S&P-GSCI, the AVG portfolio, the LO-IRP

portfolio, or the LS-IRP portfolio.

Figure 2 presents the percentage change in Sharpe ratios that is obtained per sub-period

when considering commodities as part of the strategic mix. The figure confirms our main

findings: Irrespective of the subperiod considered, adding the LO-IRP or the LS-IRP com-

modity portfolio to the traditional strategic mix improves risk-adjusted performance, while

adding the S&P-GSCI or AVG lowers risk-adjusted performance. We note that the benefits

of style integration for risk diversification are particularly strong pre-financialization (Panel

A), in periods of low volatility in commodity markets (Panel B), and, aligned with the results

of Panel B of Table 2, during equity market downturns (Panel C).

13High versus low commodity market volatility regimes are identified by fitting a GARCH(1,1) model to
the monthly excess returns of the AVG portfolio. The threshold to define the regimes is the average fitted
volatility (12.1% a year).
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Figure 2: Subperiod analysis
The figure illustrates the diversification benefits of commodities over different subperiods, such as pre and
post the financialisation of commodity futures markets (Panel A), high and low volatility regime in commod-
ity markets (Panel B), and phases of recession and expansion (Panel C). The figure presents the percentage
change in Sharpe ratios that is obtained per sub-period when adding commodities to a strategic mix made
of S&P-500 and Barclays indices.
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5. Conclusions

Our article contributes to the literature by intersecting our knowledge of the diversifica-

tion benefits of commodity futures with the idea of style integration. Instead of consider-

ing commodity building blocks that are poorly designed, we contemplated the possibility

that investors allocate their wealth to the long-only or long-short integrated portfolio of

Fernandez-Perez et al. (2019), whereby these portfolios are designed to combine the signals

that matter to the pricing of commodity futures (in our setting, carry, momentum, value,

skewness, liquidity, hedging pressure, basis-momentum, relative basis).

In particular, we view the long-short integrated portfolio as a worthy candidate for in-

clusion into a traditional portfolio made of stocks and bonds for many reasons. First, with

an impressive Sharpe ratio of 1.02, it presented remarkable performance and risk profiles

compared to all the other portfolios considered in this study. Second, the return correlations

between equities and the long-short integrated commodity portfolio were lower than those ob-

tained between equities and the other commodity portfolios considered in this study. Third,

the conditional correlations remained low during periods of increased volatility in traditional

asset markets, suggesting that the benefits of diversification are present when they are most

needed. This result contrasted sharply with that obtained for naive long-only commodity

portfolios, whose correlations with equity returns tended to rise during periods of heightened

volatility in equity markets.

Bearing all this in mind, we measured the diversification benefits of the long-short inte-

grated commodity portfolio by comparing the performance and risk profiles of a diversified

portfolio that treats it as a building block to the performance and risk profiles of a traditional

portfolio that solely invests in equities and fixed income securities. For more generality and

robustness, the analysis allowed for long-only and long-short building blocks as well as var-

ious allocation techniques for these building blocks (equal, optimized, and volatility-timed
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weighting schemes).

The results highlight the diversification benefits obtained when adding the long-short

integrated portfolio of commodity futures to the traditional asset mix of investors. Across

traditional building blocks and weighting schemes, the Sharpe ratios of the diversified port-

folios were on average 61.9% higher than the Sharpe ratios of the corresponding traditional

portfolios of stocks and fixed income securities. Regression analysis results demonstrated

the presence of positive and statistically significant alphas that averaged 2.42% a year across

models. Albeit to a lower extent than with a long-short allocation, style integration also

added value in a long-only setting: The average increase in Sharpe ratios compared to the

traditional strategic mix then equaled 27.6% across traditional building blocks and weight-

ing schemes. Reassuringly, this result indicates that the benefits of diversification are not

solely the appanage of asset managers with long-short mandates. Finally, we showed that

the conclusions were robust to the choice of equity building blocks and portfolio allocation

methods, and robustly persisted when we considered a two-step approach to style integration

as well as various sub-periods.

Accordingly, the practical implication of our work suggests that investors will benefit from

incorporating commodity risk premia into their strategic mix, provided they are selective in

the type of commodity exposure they choose. Naive exposures such as those provided by

the S&P-GSCI index or a naive long-only equally-weighted portfolio of all commodities

fail to bring significant diversification benefit to the investment portfolio. To realize the

enhanced out-of-sample performance that commodity exposure can bring to investors in a

multi-asset investment portfolio, sophisticated approaches based on long-only or long-short

style integration should be used.
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Appendix A. GARCH(1,1) and DCC(1,1) methodologies

The generalized autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev
(1986) measures the time t variance, hi,t, of a return series, Ri,t, as

Ri,t = µ+ εi,t, (A.1)

hi,t = γ + αε2i,t−1 + βhi,t−1, (A.2)

where εi,t ∼ N(0, hi,t), µ is the mean of the return series and α, β and γ are coefficients with
the following constraints: γ > 0, α ≥ 0, β ≥ 0, and α + β < 1.

We use the dynamic conditional correlation (DCC) model of Engle (2002) to estimate
the pairwise time-varying correlations between building blocks i and j. DCC is implemented
in 2 steps. The first step involves estimating the univariate conditional volatilities,

√
hi,t,

using the GARCH(1,1) model. The second step uses the standardized residuals from the
first step to estimate the time-varying conditional correlations denoted via the matrix Rt:

Ht = DtRtDt, (A.3)

where Dt = diag{
√
hi,t}. Rt can be estimated by:

Rt = Q∗−1t QtQ
∗−1
t , (A.4)

Qt = (1− a− b)Q̄+ a(εi,tεj,t) + bQt−1, (A.5)

where εi,t = Ri,t/
√
hi,t and εj,t = Rj,t/

√
hj,t are the standardized residuals of building blocks

i and j from the first step, Q̄ is the unconditional covariance matrix of the standardized
residuals, and a and b are coefficients with the following constraints: a ≥ 0, b ≥ 0, and
a+ b < 1. Q∗t = diag{qii,t} is a diagonal matrix with its elements qii,t defined as the square
root of the ith diagonal element of Qt. The conditional correlation between building blocks
i and j at time t is therefore given by:

ρij,t =
qij,t√

qii,t
√
qjj,t

(A.6)
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Appendix B. List of stock index, fixed income and interest rate futures

This table presents the list of stock index futures and fixed income and interest rate futures that are used
to construct the long-only and long-short integrated portfolios of traditional assets.

Equities Fixed Income

Dow-Jones Industrial Average 1-Month Eurodollar
E-mini Dow-Jones Industrial Average 30-Day FED Funds
E-Mini S&P500 90-Day U.S. Treasury Bill
Euro Stoxx 50 3-Month CD
Eurotop 100 3-Month Eurodollar
Eurotop 300 3-Month Euromark
Major Market Index 2-Year U.S. Treasury Note
MSCI Asia 3-Year U.S. Treasury Note
MSCI EAFE 5-Year Eurodollar Bundle
MSCI Emerging Markets 5-Year U.S. Treasury Note
MSCI Emerging Markets Latin America 10-Year Agency Note
MSCI India 10-Year U.S. Treasury Note
MSCI Russia 30-Year U.S. Treasury Bond
MSCI Taiwan BC U.S. Aggregate
MSCI Thailand Brazil C Barra Index
MSCI USA Brazil EI Bond Index
MSCI World GNMA Constant Default Rate
Nasdaq 100 Mexican Brady Bond Index
Nasdaq Biotechnology Moodys Bond Index
Nikkei 225 Municipal Bond Index
NYSE composite Ultra 10-Year U.S. Treasury Note
PSE Technology Ultra Treasury Bond Index
Russell 1000
Russell 1000 Growth
Russell 1000 Value
Russell 2000
Russell 2000 Growth
Russell 2000 Value
Russell 3000
S&P Citigroup Growth
S&P Citigroup Value
S&P Consumer Discretionary
S&P Consumer Staples
S&P Energy
S&P Finance
S&P Health
S&P Industrial
S&P Information Technology
S&P Materials
S&P Small Capitalization
S&P Utilities
S&P400 Mid Capitalization
S&P500
Value Line
VIX
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