Inferring robust decision models in multicriteria classification problems: An experimental analysis

Abstract : Recent research on robust decision aiding has focused on identifying a range of recommendations from preferential information and the selection of representative models compatible with preferential constraints. This study presents an experimental analysis on the relationship between the results of a single decision model (additive value function) and the ones from the full set of compatible models in classification problems. Different optimization formulations for selecting a representative model are tested on artificially generated data sets with varying characteristics.
Type de document :
Article dans une revue
European Journal of Operational Research, Elsevier, 2014, 236 (2), pp.601-611. 〈10.1016/j.ejor.2013.12.034〉
Liste complète des métadonnées

https://hal-audencia.archives-ouvertes.fr/hal-00961323
Contributeur : Galariotis Emilios <>
Soumis le : mercredi 19 mars 2014 - 18:26:48
Dernière modification le : vendredi 21 mars 2014 - 08:14:07

Identifiants

Collections

Citation

Michael Doumpos, Constantin Zopounidis, Emilios C. Galariotis. Inferring robust decision models in multicriteria classification problems: An experimental analysis. European Journal of Operational Research, Elsevier, 2014, 236 (2), pp.601-611. 〈10.1016/j.ejor.2013.12.034〉. 〈hal-00961323〉

Partager

Métriques

Consultations de la notice

294